Analisis Kinerja Website Perguruan Tinggi Menggunakan Pendekatan Optimasi: Indikator SEO dan Algoritma PSO
Abstract
Website perguruan tinggi (PT) memiliki peran strategis dalam memperkuat eksistensi dan citra institusi melalui penyediaan informasi, layanan akademik, serta peningkatan daya saing digital. Namun, banyak website PT masih menghadapi permasalahan teknis seperti optimasi mesin pencari (SEO) yang rendah dan Time To First Byte (TTFB) yang lambat, sehingga berpotensi menurunkan visibilitas dan pengalaman pengguna. Penelitian ini bertujuan mengevaluasi kinerja website PT menggunakan pendekatan Particle Swarm Optimization (PSO) serta memberikan masukan strategis untuk peningkatan perannya. Sampel penelitian mencakup 27 website PT di wilayah Sumatera Barat dan Riau. Analisis dilakukan dengan 13 indikator kinerja utama yang mencakup aspek SEO, kecepatan, struktur konten, dan keandalan teknis. Hasil penelitian diharapkan memberikan rekomendasi konkret bagi PT dalam pengelolaan website guna meningkatkan eksistensi, daya saing, dan kualitas layanan digital. Selain itu, penelitian ini memberikan insight optimasi bahwa peningkatan frekuensi pembaruan konten dan perbaikan struktur SEO mampu meningkatkan nilai fitness website.
Kata kunci: Website perguruan tinggi, Search Engine Optimization (SEO), Time To First Byte (TTFB), Particle Swarm Optimization (PSO), Kinerja website, Eksistensi Perguruan Tinggi
References
[2] P. W. Chong, S. Z. M. Samsi, and M. N. Mohd Noor, “A REPORT ON WORLD’S TOP 20 UNIVERSITIES WEBSITE MARKETING COMMUNICATION STRATEGY: WHAT CAN BE EMULATED,” Int. J. Educ. Psychol. Couns., vol. 5, no. 37, pp. 56–71, Dec. 2020, doi: 10.35631/IJEPC.537005.
[3] A. Dalvi and R. Saraf, “Inspecting Engineering College Websites for Effective Search Engine Optimization,” in 2019 International Conference on Nascent Technologies in Engineering (ICNTE), Navi Mumbai, India: IEEE, Jan. 2019, pp. 1–5. doi: 10.1109/ICNTE44896.2019.8945823.
[4] C. Nath and L. Ahuja, “Search Engine Optimization (SEO): Improving Website Ranking,” Int. J. Eng. Res., vol. 3, no. 4, 2014.
[5] M. A. Putri, “Implementing and Analyzing Web Performance Testing for Universitas Terbuka’s Website with GTMetrix and Pingdom,” J. Teknol. Sist. Inf. Dan Apl., vol. 7, no. 4, pp. 1598–1602, Oct. 2024, doi: 10.32493/jtsi.v7i4.45095.
[6] D. I. Jusuf, “Optimizing SEO (Search Engine Optimization) Strategy to Increase Visibility and Achievement of Marketing Goals,” vol. 2, no. 2, 2023.
[7] M. K. Daoud et al., “Optimizing online visibility: A comprehensive study on effective SEO strategies and their impact on website ranking,” J. Infrastruct. Policy Dev., vol. 8, no. 7, p. 4860, Aug. 2024, doi: 10.24294/jipd.v8i7.4860.
[8] M. N. Khalid, M. Iqbal, A. Manzoor, M. Muneeb Abid, and S. Raza Talpur, “SEO: TIPS to Minimize Bounce Rate of Website User,” VFAST Trans. Softw. Eng., vol. 12, no. 1, pp. 58–69, Mar. 2024, doi: 10.21015/vtse.v12i1.1708.
[9] I. Arief, “Deciphering the Visibility of Higher Education Institutions: A Statistical Analysis of Google Search Console Data,” Int. J. Adv. Sci. Comput. Eng., vol. 5, no. 1, pp. 75–85, Apr. 2023, doi: 10.62527/ijasce.5.1.131.
[10] Ovat Friday Aje and Anyandi Adie Josephat, “The particle swarm optimization (PSO) algorithm application – A review,” Glob. J. Eng. Technol. Adv., vol. 3, no. 3, pp. 001–006, Jun. 2020, doi: 10.30574/gjeta.2020.3.3.0033.
[11] K. R. Harrison, B. M. Ombuki-Berman, and A. P. Engelbrecht, “A parameter-free particle swarm optimization algorithm using performance classifiers,” Inf. Sci., vol. 503, pp. 381–400, Nov. 2019, doi: 10.1016/j.ins.2019.07.016.
[12] O. S. Riza, N. Lestari, and N. Nurjanah, “Analyzing the Usability of University’s Websites in Sumatera Using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) Method,” Motiv. J. Mech. Electr. Ind. Eng., vol. 4, no. 1, pp. 17–26, Feb. 2022, doi: 10.46574/motivection.v4i1.105.
[13] D. N. Pandya, D. Suryadharma, L. A. Wulandhari, and I. N. Alam, “Assessing University Website Performance: A Comparative Analysis Using GTmetrix,” Int. J. Comput. Sci. Humanit. AI, vol. 1, no. 1, pp. xx–xx, Oct. 2024, doi: 10.21512/ijcshai.v1i1.12152.
[14] L. Sun, X. Song, and T. Chen, “An Improved Convergence Particle Swarm Optimization Algorithm with Random Sampling of Control Parameters,” J. Control Sci. Eng., vol. 2019, pp. 1–11, Jun. 2019, doi: 10.1155/2019/7478498.
