Integrasi Quantum Computing dalam Machine Learning Technology : Peluang dan Risiko

  • Welnof Satria Universitas Dharmawangsa
  • Ananda Hadi Elyas Universitas Dharmawangsa Medan
  • Sabrina Aulia Rahma Universitas Dharmawangsa Medan
Abstract viewed = 0 times
PDF (Bahasa Indonesia) downloaded = 0 times

Abstract

Integrasi antara komputasi kuantum dan Artificial Intelligence (AI) menghadirkan paradigma baru dalam pengembangan teknologi informasi modern. Komputasi kuantum, dengan prinsip superposisi dan keterikatan, menawarkan kemampuan pemrosesan data yang jauh melampaui batasan komputasi klasik. Sementara itu, AI telah terbukti efektif dalam mengenali pola dan mendukung pengambilan keputusan cerdas. Penelitian ini mengkaji bentuk-bentuk integrasi seperti Quantum Machine Learning (QML) dan Quantum Neural Networks (QNN), serta algoritma kuantum seperti QAOA dan VQE yang berpotensi mempercepat pelatihan model dan menyelesaikan masalah optimasi kompleks. Selain peluang teknis dan inovasi lintas sektor, kajian ini juga menyoroti tantangan etis, sosial, dan kesiapan infrastruktur di Indonesia. Dengan pendekatan kualitatif deskriptif melalui studi pustaka, penelitian ini bertujuan memberikan kontribusi akademik dan strategis dalam membangun ekosistem teknologi Quantum-AI yang inklusif dan berkelanjutan.

References

Arute, F., et al. (2020). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505–510. https://doi.org/10.1038/s41586-019-1666-5
Biamonte, J., & Wittek, P. (2021). Quantum machine learning: Foundations and applications. npj Quantum Information, 7(1), 1–15.
Schuld, M., & Killoran, N. (2020). Quantum machine learning in feature Hilbert spaces. Physical Review Letters, 122(4), 040504.
Dunjko, V., & Briegel, H. J. (2020). Machine learning & artificial intelligence in the quantum domain. Reports on Progress in Physics, 83(7), 074001.
Erlin, Yulvia Nora Marlim, Junadhi, Laili Suryati, & Nova Agustina. (2022). Deteksi Dini Penyakit Diabetes Menggunakan Machine Learning dengan Algoritma Logistic Regression. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 11(2), 88–96. https://doi.org/10.22146/jnteti.v11i2.3586.
Montanaro, A. (2021). Quantum algorithms: An overview. npj Quantum Information, 7, 15023.
Zein, A. (2025). Komputer Kuantum: Paradigma Baru dalam Evolusi Teknologi Komputasi. Engineering And Technology International Journal, 7(1). Artikel prosiding lokal
Sulianta, F. (2024). Komputasi Kuantum dan Algoritma: Revolusi Pemrosesan Informasi di Era Modern. ResearchGate. PDF publikasi
IBM Quantum. (2023). Quantum Computing for Beginners. IBM Research White Paper.
Google AI Quantum. (2022). Building a Scalable Quantum Computer. Technical Report.
Microsoft Azure Quantum. (2023). Quantum Development Kit Documentation. Microsoft Docs.
Zhang, J., et al. (2021). Quantum neural network states: A brief review of methods and applications. Quantum Science and Technology, 6(4), 043001.
Huang, H. Y., et al. (2022). Quantum advantage in learning from experiments. Nature, 603(7902), 146–150.
Benedetti, M., Lloyd, E., Sack, S., & Fiorentini, M. (2020). Parameterized quantum circuits as machine learning models. Quantum Science and Technology, 5(4), 044008.
Cerezo, M., et al. (2021). Variational quantum algorithms. Nature Reviews Physics, 3(9), 625–644.
Bharti, K., et al. (2022). Noisy intermediate-scale quantum algorithms. Reviews of Modern Physics, 94(1), 015004.
Shaydulin, R., et al. (2020). Quantum approximate optimization with hard and soft constraints. Quantum, 4, 256.
Kiani, B., et al. (2023). Quantum-enhanced reinforcement learning. Machine Learning: Science and Technology, 4(2), 025001.
National Quantum Initiative Advisory Committee. (2021). Annual Report on Quantum Research and Development. U.S. Department of Energy.
Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.
Published
2026-01-23
How to Cite
SATRIA, Welnof; ELYAS, Ananda Hadi; RAHMA, Sabrina Aulia. Integrasi Quantum Computing dalam Machine Learning Technology : Peluang dan Risiko. Seminar Nasional Informatika (SENATIKA), [S.l.], p. 1-8, jan. 2026. Available at: <https://www.ejournal.pelitaindonesia.ac.id/ojs32/index.php/SENATIKA/article/view/5241>. Date accessed: 15 feb. 2026.
Section
Articles