Implementation of the Random Forest Algorithm in Predicting Bitcoin (BTC) Prices

  • Steven Owen Institut Bisnis dan Teknologi Pelita Indonesia
  • Muhammad Siddik Institut Bisnis dan Teknologi Pelita Indonesia
  • Wilda Susanti Institut Bisnis dan Teknologi Pelita Indonesia
  • Gustientiedina Gustientiedina Institut Bisnis dan Teknologi Pelita Indonesia
Abstract viewed = 0 times
PDF downloaded = 0 times

Abstract

The fluctuating price of Bitcoin is widely used as a means of generating profit. The instability of Bitcoin price movements causes fluctuations, which traders utilize as a trading strategy. The purpose of this research is to analyze and predict Bitcoin prices to determine buying and selling strategies. The Random Forest algorithm is a machine learning method that combines multiple decision trees for classification and prediction with high accuracy. The classified data consists of Bitcoin price data from January 2024 to November 2024. The results of this study show that the accuracy level of the Random Forest algorithm using a 60:40 and 80:20 data split achieves an accuracy of 50.75% and 47.76%, respectively. The most suitable data split for Bitcoin price prediction is 60:40 and 80:20. This is because a balanced data split can influence the Random Forest algorithm’s calculations, maintaining accuracy in predicting Bitcoin prices, thereby helping investors predict Bitcoin prices for buying and selling strategies

References

Al Fajri, M. (2023). Penerapan K-Means Clustering Dalam Memprediksi Mata Uang Cryptocurrency Untuk Mengetahui Pergerakan Kenaikan, Penurunan, Dan Sideways Dalam Harga Bitcoin Pada Blockchain Binance. Education Sains Technology Mathematic (EDUSTEM), 1(1), 146–159.
Aulia, A. S. (2019). Analisis Volatility Spillover Harga Bitcoin Dengan Harga Altcoin Tahun 2013-2018. JASa (Jurnal Akuntansi, Audit Dan Sistem Informasi Akuntansi), 3(2), 183–194. http://journal.unla.ac.id/index.php/jasa/article/view/942
Bangun Pasaribu, & Wilda Susanti. (2021). Sistem Informasi Pengajuan RancanganUsulan Penelitian Menggunakan PHP Native dan Bot Telegram. Jurnal Mahasiswa Aplikasi Teknologi Komputer Dan Informasi, 3(1), 29–38.
Cecep Abdul Cholik. (2021). PERKEMBANGAN TEKNOLOGI INFORMASI KOMUNIKASI / ICT DALAM BERBAGAI BIDANG. Jurnal Fakultas Teknik, 2(2), 39–46.
Dewi, I. G. A. M. P., Parwita, W. G. S., & Setiawan, I. M. D. (2021). Algoritma Decision Tree untuk Klasifikasi Calon Debitur LPD Desa Adat Anggungan. Jurnal Krisnadana, 1(1), 23–36. https://doi.org/10.58982/krisnadana.v1i1.79
Gaol Lumban Humphrey, I. (2022). Faktor-Faktor Yang Mempengaruhi Pergerakan Harga Bitcoin Tahun 2018. In Universitas Brawijaya. https://jimfeb.ub.ac.id/index.php/jimfeb/article/view/8142
Indriyanti, I., Ichsan, N., Fatah, H., Wahyuni, T., & Ermawati, E. (2022). Implementasi Orange Data Mining Untuk Prediksi Harga Bitcoin. Jurnal Responsif : Riset Sains Dan Informatika, 4(2), 118–125. https://doi.org/10.51977/jti.v4i2.762
Jollyta, D., Hajjah, A., Haerani, E., & Siddik, M. (2023). Algoritma Klasifikasi untuk Pemula Solusi Python dan RapidMiner. Deepublish. https://books.google.co.id/books?id=y84TEQAAQBAJ
Nadila, D., Silfia, Hidayaty, D. E., & Mulyadi, D. (2023). Pemahaman investasi, motivasi investasi dan minat investasi di pasar modal. Jurnal Pijar Studi Manajemen Dan Bisnis, 1(2), 104–109. https://e-journal.naureendigition.com/index.php/pmb
Naufal Hasani, M. (2022). ANALISIS CRYPTOCURRENCY SEBAGAI ALAT ALTERNATIF DALAM BERINVESTASI DI INDONESIA PADA MATA UANG DIGITAL BITCOIN. Jurnal Ilmiah Ekonomi Bisnis, 8(2), 329–344. http://ejournal.stiepancasetia.ac.id/index.php/jiebJilid
Partogi, Y., & Pasaribu, A. (2021). Perancangan Metode Decision Tree Terhadap Sistem Perpustakaan STMIK Kuwera. Jurnal Sistem Informasi Dan Teknologi (SINTEK), 1(2), 20–26. https://doi.org/10.56995/sintek.v1i2.4
Permana, A. P., Ainiyah, K., & Holle, K. F. H. (2021). Analisis Perbandingan Algoritma Decision Tree, kNN, dan Naive Bayes untuk Prediksi Kesuksesan Start-up. JISKA (Jurnal Informatika Sunan Kalijaga), 6(3), 178–188. https://doi.org/10.14421/jiska.2021.6.3.178-188
Pramita, K. D., & Hendrayana, K. D. (2021). Perlindungan Hukum Terhadap Investor Sebagai Konsumen dalam Investasi Online. Jurnal Pacta Sunt Servanda, 2(1), 1–7.
Purnomo, E., Rahmawati, I. R., & Holis, M. N. (2022). PENGARUH PANDEMI COVID 19 TERHADAP HARGA SAHAM PADA JAKARTA STOCK EXCHANGE COMPOSITE (JKSE) DAN BITCOIN PER RUPIAH INDONESIA The Effect Of The Covid 19 Pandemic On Stock Prices In Jakarta Stock Exchange Composite (Jkse) And Bitcoin Per Indonesian Rupiah. Nusantara Hasana Journal, 2(2), 318–332.
Putra, N. D. N., & Robiyanto, R. (2021). Korelasi Dinamis Pergerakan Cryptocurrency Dan Indeks Harga Saham Sektoral Di Bursa Efek Indonesia. Management and Accounting Expose, 4(1), 35–44. https://doi.org/10.36441/mae.v4i1.275
Rohman, M. N. (2021). Tinjauan Yuridis Normatif Terhadap Regulasi Mata Uang Kripto (Crypto Currency) di Indonesia. Jurnal Supremasi, 11(2), 1–10. https://doi.org/10.35457/supremasi.v11i2.1284
Saadah, S., & Salsabila, H. (2021). Prediksi Harga Bitcoin Menggunakan Metode Random Forest. Jurnal Komputer Terapan, 7(1), 24–32.
Saputri, N. D., Khalid, K., & Rolliawati, D. (2022). Komparasi penerapan metode Bagging dan Adaboost pada Algoritma C4. 5 untuk prediksi Penyakit Stroke. SISTEMASI: Jurnal Sistem Informasi, 11(3), 567–577. http://sistemasi.ftik.unisi.ac.id
Sujjada, A., Sembiring, F., & Febriansyah. (2024). Prediksi Harga Bitcoin Menggunakan Algoritma Long ShortTerm Memory. Jurnal Inovtek Polbeng, 9(1), 450–459. https://doi.org/10.36802/jnanaloka.2022.v3-no2-69-76
Supriyadi, R., Gata, W., Maulidah, N., & Fauzi, A. (2020). Penerapan Algoritma Random Forest Untuk Menentukan Kualitas Anggur Merah. E-Bisnis : Jurnal Ilmiah Ekonomi Dan Bisnis, 13(2), 67–75. https://doi.org/10.51903/e-bisnis.v13i2.247
Published
2025-06-30
How to Cite
OWEN, Steven et al. Implementation of the Random Forest Algorithm in Predicting Bitcoin (BTC) Prices. International Conference on ATLAS (Advanced Technologies, Learning Algorithms, and Systems), [S.l.], v. 1, n. 1, p. 29-34, june 2025. Available at: <https://www.ejournal.pelitaindonesia.ac.id/ojs32/index.php/ATLAS/article/view/5165>. Date accessed: 15 feb. 2026.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.