Cyberbullying Sentiment Analysis On Tweets In X (Twitter): A Case Study Using Support Vector Machine Method

  • Angelin Julia Institut Bisnis dan Teknologi Pelita Indonesia
  • Dewi Nasien
Abstract viewed = 0 times
PDF downloaded = 0 times

Abstract

The development of technology is currently experiencing very rapid progress, especially in the field of information and communication technology. The impact is so great that technology is considered an important part of everyday life. This has caused the internet to also experience major changes including in aspects of communication and information exchange. One example of technological progress is social media. The increasing number of internet users in Indonesia certainly means that there are also many social media platforms available and used by internet users to surf on the platform. Twitter (X) is a social media platform. Twitter (X) has become an effective means of spreading news and other content. Unwittingly, currently many social media users often cause various problems such as insults or defamation which is also known as cyberbullying. For this reason, this study analyzes sentiment with an approach process to identify and categorize opinions on certain topics or contexts from large data sources. By using Support Vector Machine (SVM) with the results of the Support Vector Machine method classification getting an accuracy value of 91%. The precision of the tested data results with the prediction results for the negative class is 91%, and the recall value used to measure the model's ability to predict negative data is 100% which shows that the model can detect all negative data perfectly. The results of the implementation of the sentiment prediction model using the SVM method that has been trained with a dataset that has positive and negative labeled sentences that can be effectively used to analyze sentiment in natural language texts for various purposes, such as detecting cyberbullying or analyzing public opinion.

References

Adnan, A. J., Putriyani, D., Wibowo, H. A., & Ramadan, S. (2024). Perlindungan Hukum terhadap Anak Sebagai Korban Tindak Pidana Cyberbullying. Indonesian Journal of Criminal Law and Criminology (IJCLC), 5(1), 25–33. https://doi.org/https://doi.org/10.18196/ijclc.v5i1.20935
Afrianty, I., Nasien, D., & Haron, H. (2022). Performance Analysis of Support Vector Machine in Sex Classification of The Sacrum Bone in Forensic Anthropology. JURNAL TEKNIK INFORMATIKA, 15(1), 63–72. https://doi.org/https://doi.org/10.15408/jti.v15i1.25254
apjii.or.id. (2024). Pengguna Internet di Indonesia Meningkat di 2024. Asosiasi Penyelenggara Jasa Internet Indonesia (APJII).
Betesda. (2020). Peningkatan Optimasi Sentimen Dalam Pelaksanaan Proses Pemilihan Presiden Berdasarkan Opini Publik Dengan Menggunakan Algoritma Naïve Bayes Dan Paricle Swarm Optimization. JSI (Jurnal Sistem Informasi) Universitas Suryadarma, 7(2), 101–114. https://doi.org/10.35968/jsi.v7i2.452
Bordoloi, M., & Biswas, S. K. (2023). Sentiment analysis: A survey on design framework, applications and future scopes. In Artificial Intelligence Review (Vol. 56, Issue 11). Springer Netherlands. https://doi.org/10.1007/s10462-023-10442-2
Dwipayana, N. L. A. M., Setiyono, S., & Pakpahan, H. (2020). Cyberbullying Di Media Sosial. Bhirawa Law Journal, 1(2), 63–70. https://doi.org/10.26905/blj.v1i2.5483
Fakra. (2024). Pengguna Internet Indonesia Tembus 221 Juta, Didominasi Gen Z. Lintasterkini.Com.
Gembala, J. (2024). 23 Statistik Penting Twitter (X) yang Perlu Anda Ketahui di Tahun 2024. Thesocialshepherd-Com.
Hakim, B., & Kinasih, P. R. (2024). Sentiment Analysis of Indonesian Citizen Tweets Using Support Vector Machine on the Rebranding of Twitter to X. Jurnal Tekno Kompak, 18(2), 468. https://doi.org/10.33365/jtk.v18i2.4293
Harahap, M. A., & Adeni, S. (2020). Tren Penggunaan Media Sosial Selama Pandemi Di Indonesia. Jurnal Professional FIS UNIVED, 7(2), 13–23.
Hassolthine, Ramadhona, C., Riad Sahara, Haq, F. A. S. N., & Abdullah, S. (2023). Penerapan Algoritma K-Nearest Neighbour (K-Nn) Sebagai Klasifikasi Tweets Pada Twitter. JOISIE (Journal Of Information Systems And Informatics Engineering), 7(2), 358–363. https://doi.org/10.35145/joisie.v7i2.3975
Hikmawati, P. (2024). Regulasi Cyberbullying dan Perlindungan Hukum terhadap Korbannya. Negara Hukum: Membangun Hukum Untuk Keadilan Dan Kesejahteraan, 15(1), 17–35. https://doi.org/10.22212/jnh.v15i1.4383
Ikhsanudin, A. (2023). KPAI: Luluk Nuril Lakukan Cyberbullying, Korban Hilang Percaya Diri. News.Detik.Com. https://news.detik.com/berita/d-6918297/kpai-luluk-nuril-lakukan-cyberbullying-korban-hilang-percaya-diri
Kamal, R. M., & Rainarli, E. (2019). Analisis Sentimen Cyberbullying Pada Komentar Facebook Dengan Metode Klasifikasi Support Vector Machine. Universitas Komputer Indonesia. https://elibrary.unikom.ac.id/id/eprint/1228/
Karo, I. M. K., Fudzee, M. F. M., Kasim, S., & Ramli, A. A. (2022). Karonese Sentiment Analysis: A New Dataset and Preliminary Result. International Journal on Informatics Visualization, 6(2–2), 523–530. https://doi.org/10.30630/joiv.6.2-2.1119
Khaira, U., Johanda, R., Utomo, P. E. P., & Suratno, T. (2020). Sentiment Analysis of Cyberbullying on Twitter Using SentiStrength. Indonesian Journal of Artificial Intelligence and Data Mining, 3(1), 21–26. https://doi.org/10.24014/ijaidm.v3i1.9145
Kurniawan, K., Yosep, I., Khoirunnisa, K., Mardhiyah, A., & Fitriani, N. (2024). Dampak Cyberbullying terhadap Risiko Bunuh Diri pada Remaja: Narrative Review. JPP (Jurnal Kesehatan Poltekkes Palembang), 19(1), 8–16. https://doi.org/10.36086/jpp.v19i1.2012
Laora, A. Y., & Sanjaya, F. (2021). Fenomena Cyberbullying di Media Sosial Instagram (Studi Deskriptif Tentang Kesehatan Mental Pada Generasi Z Usia 20-25 Tahun di Jakarta). Oratio Directa (Prodi Ilmu Komunikasi), 3(1), 346–368. https://www.ejurnal.ubk.ac.id/index.php/oratio/article/view/160/113
Maulana, F. A., & Ernawati, I. (2020). Analisa sentimen cyberbullying di jejaring sosial twitter dengan algoritma naïve bayes. Seminar Nasional Mahasiswa Ilmu Komputer Dan Aplikasinya (SENAMIKA, 529–538. https://conference.upnvj.ac.id/index.php/senamika/article/view/619
Maulina Putri, S. S., Arhami, M., & Hendrawaty, H. (2023). Penerapan Metode SVM pada Klasifikasi Kualitas Air. Journal of Artificial Intelligence and Software Engineering (J-AISE), 3(2), 93. https://doi.org/10.30811/jaise.v3i2.4630
Muslim, M. A., Prasetiyo, B., Mawarni, E. L. H., Herowati, A. J., Mirqotussa’adah, Rukmana, S. H., & Nurzahputra, A. (2019). Data Mining Algoritma C4.5 Disertai Contoh Kasus dan Penerapannya dengan Program Computer (E. Listiana & N. Cahyani (eds.)).
Nasien, D., Yuhaniz, S. S., & Haron, H. (2010). Statistical Learning Theory and Support Vector Machines. 2010 Second International Conference on Computer Research and Development, 760–764. https://doi.org/10.1109/ICCRD.2010.183
Erlin, Yulvia Nora Marlim, Junadhi, Laili Suryati, & Nova Agustina. (2022). Early Detection of Diabetes Using Machine Learning with Logistic Regression Algorithm. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 11(2), 88-96. https://doi.org/10.22146/jnteti.v11i2.3586
Patel, A., Oza, P., & Agrawal, S. (2022). Sentiment Analysis of Customer Feedback and Reviews for Airline Services using Language Representation Model. Procedia Computer Science, 218, 2459–2467. https://doi.org/10.1016/j.procs.2023.01.221
Pebriyani, H. (2024). Hasil Survei APJII : Pengguna Internet di Indonesia Tembus 221 Juta, Mendominasi Gen Z. Komite.Id.
Sugiarta, I. K. A., Dewi, P. A. C., & Utami, N. W. (2023). ANALISA SENTIMEN MAHASISWA TERHADAP LAYANAN STMIK PRIMAKARA MENGGUNAKAN ALGORITMA NAIVE BAYES DAN K-NEAREST NEIGHBOR. Jurnal Informatika Teknologi Dan Sains (Jinteks), 5(3). https://doi.org/https://doi.org/10.51401/jinteks.v5i3.3159
Surbakti, A. Q., Hayami, R., & Amien, J. Al. (2021). Analisa Tanggapan Terhadap Psbb Di Indonesia Dengan Algoritma Decision Tree Pada Twitter. Jurnal CoSciTech (Computer Science and Information Technology), 2(2), 91–97. https://doi.org/https://doi.org/10.37859/coscitech.v2i2.2851
Willard, N. E. (2007). Cyberbullying and Cyberthreats: Responding to the Challenge of Online Social Aggression, Threats, and Distress.
Published
2025-06-30
How to Cite
JULIA, Angelin; NASIEN, Dewi. Cyberbullying Sentiment Analysis On Tweets In X (Twitter): A Case Study Using Support Vector Machine Method. International Conference on ATLAS (Advanced Technologies, Learning Algorithms, and Systems), [S.l.], v. 1, n. 1, p. 19-28, june 2025. Available at: <https://www.ejournal.pelitaindonesia.ac.id/ojs32/index.php/ATLAS/article/view/5151>. Date accessed: 15 feb. 2026.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.