JOISIE (Journal Of Information Systems And Informatics Engineering) p- ISSN: 2503-5304
Vol. 8, No.2, Desember 2024, HIm 369-380 e- ISSN: 2527-3116
Received: 26 November 2024, Revised: 23 Desember 2024, Accepted: 31 Desember2024

IMPLEMENTASI CLEAN ARCHITECTURE PADA APLIKASI MOBILE
AL-QURAN BERBASIS FLUTTER

M. Zihad Azziqgra®, llyas Nuryasin?

12Prodi Informatika, Universitas Muhammadiyah Malang, JI. Raya Tlogomas No.246, Babatan, Tegalgondo,
Kota Malang.

email: tazzigrazihad@webmail.umm.ac.id, 2ilyas@umm.ac.id

Abstract

Flutter-based mobile application development is gaining popularity due to its cross-platform
development efficiency. However, maintainability is a major challenge to overcome in application
development. Software maintenance costs are estimated to account for up to 79%-90% of the total
application development costs, so maintainability becomes an important factor in ensuring software
quality. Based on these issues, this research focuses on the implementation of Clean Architecture in
Flutter-based mobile applications, using the Al-Quran application as a case study, and evaluates its
maintainability level using McCall's Software Quality Model. Clean Architecture was chosen for its
approach of separating business logic, data access, and user interface into structured layers. The
implementation results show a maintainability level of 79%, which is rated as "good". Clean
Architecture successfully supports application modularity and flexibility through the application of
SOLID principles, specifically the Single Responsibility Principle and the Dependency Inversion
Principle. This research provides insight into the effectiveness of implementing Clean Architecture in
the development of Flutter-based mobile applications.

Keywords: Android, Clean Architecture, Flutter, Maintainability, McCall Software Quality Model.
Abstrak

Pengembangan aplikasi mobile berbasis Flutter semakin populer karena efisiensi pengembangan
multi-platform yang ditawarkannya. Namun, maintainability menjadi tantangan utama yang harus
diatasi dalam pengembangan aplikasi. Biaya pemeliharaan perangkat lunak diperkirakan
menyumbang hingga 79%-90% dari total biaya pengembangan aplikasi, sehingga maintainability
menjadi faktor penting dalam memastikan kualitas perangkat lunak. Berdasarkan permasalahan
tersebut, penelitian ini berfokus pada implementasi Clean Architecture pada aplikasi mobile berbasis
Flutter, dengan aplikasi Al-Quran sebagai studi kasus, serta mengevaluasi tingkat maintainability-nya
menggunakan McCall's Software Quality Model. Clean Architecture dipilih karena pendekatannya
yang memisahkan logika bisnis, akses data, dan antarmuka pengguna ke dalam lapisan-lapisan yang
terstruktur. Hasil implementasi menunjukkan tingkat maintainability sebesar 79%, yang
dikategorikan "baik". Clean Architecture berhasil mendukung modularitas dan fleksibilitas aplikasi
melalui penerapan prinsip SOLID, khususnya Single Responsibility Principle dan Dependency
Inversion Principle. Penelitian ini memberikan wawasan tentang efektivitas penerapan Clean
Architecture dalam pengembangan aplikasi mobile berbasis Flutter.

Kata kunci: Android, Clean Architecture, Flutter, Maintainability, McCall Software Quality
Model.

1. PENDAHULUAN

Perkembangan teknologi yang pesat telah membawa perubahan signifikan dalam pengembangan
perangkat lunak, termasuk aplikasi mobile yang kini menjadi salah satu alat utama dalam berbagai
sektor kehidupan. Aplikasi mobile, yang dirancang untuk perangkat seperti smartphone dan tablet,
kini menjadi solusi untuk meningkatkan efisiensi dan produktivitas pengguna (Ikhwan dkk., 2023).
Di Indonesia, penggunaan aplikasi berbasis Android mencapai 92,03% pada Februari 2021, dengan
lebih dari 2,9 juta aplikasi terdaftar di Google Play Store (Badrudduja & Putra, 2022), yang

https://doi.org/10.35145/joisie.v8i2.4763
JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

https://doi.org/10.35145/joisie.v8i2.4763
mailto:azziqrazihad@webmail.umm.ac.id
mailto:ilyas@umm.ac.id

370 | Jurnal JOISIE, Volume 8, Nomor 2, Desember 2024

menunjukkan adanya persaingan sengit antar pengembang untuk menciptakan aplikasi yang lebih baik
dan lebih efisien.

Salah satu platform pengembangan aplikasi yang sedang populer adalah Flutter, yang
memungkinkan pengembang untuk membuat aplikasi multi-platform (Android, iOS, dan Web)
dengan satu kode sumber (Bhagat, 2022; Muslim dkk., 2022). Flutter menawarkan kemudahan dalam
pengembangan aplikasi, mengurangi kebutuhan pengkodean ganda untuk berbagai platform, dan
memungkinkan proses pengembangan yang lebih cepat dan efisien (Widiarta dkk., 2021).

Namun, meskipun pengembangan aplikasi semakin cepat, tantangan utama yang dihadapi adalah
maintainability. Biaya pemeliharaan perangkat lunak diperkirakan menyumbang hingga 79%-90%
dari total biaya pengembangan (Sondha dkk., 2020), yang menunjukkan pentingnya merancang
aplikasi dengan arsitektur yang memungkinkan pemeliharaan yang mudah. Semakin tinggi
maintainability dari suatu aplikasi, maka semakin mudah pula proses pemeliharaannya sehingga
biaya, usaha dan waktu yang dibutuhkan akan semakin berkurang (Deta Aditya dkk., 2022; Laksono
dkk., 2024). Clean Architecture adalah salah satu pendekatan yang dapat meningkatkan
maintainability, karena menyediakan struktur yang jelas untuk aplikasi, memungkinkan perubahan
dan pembaruan yang lebih mudah tanpa memengaruhi bagian lain dari sistem (Subagio & Muttaqin,
2022).

Dalam konteks ini, penerapan Clean Architecture pada aplikasi berbasis Flutter dapat memberikan
solusi yang efektif untuk masalah pemeliharaan aplikasi. Clean Architecture pertama Kkali
diperkenalkan oleh Robert C. Martin (Anhar dkk., 2024). Berfokus pada pemisahan kode aplikasi
menjadi beberapa lapisan, yang masing-masing memiliki tanggung jawab yang jelas (Wijayanto dkk.,
2023). Pendekatan ini bertujuan untuk membuat aplikasi lebih mudah dikelola, diuji, dan diperbarui
tanpa mempengaruhi bagian lain dari aplikasi (Yadati, 2023). Struktur ini memisahkan logika bisnis,
antarmuka pengguna, dan lapisan data, sehingga mempermudah pengelolaan kode dan meminimalkan
ketergantungan antar bagian aplikasi.

Selain itu, untuk mencapai tingkat maintainability yang tinggi, Clean Architecture mengadopsi
prinsip SOLID, yaitu lima prinsip desain perangkat lunak yang bertujuan untuk menciptakan sistem
yang mudah dipahami, adaptif terhadap perubahan, dan dapat digunakan kembali (Cabral dkk., 2024).
Kelima prinsip dalam SOLID adalah Single Responsibility Principle (SRP), Open/Closed Principle
(OCP), Liskov Substitution Principle (LSP), Interface Segregation Principle (ISP), dan Dependency
Inversion Principle (DIP) (Sanchez dkk., 2022). Penerapan prinsip SOLID dapat meningkatkan
modularitas, fleksibilitas, dan keterbacaan kode, yang semuanya berkontribusi pada kemudahan
pemeliharaan aplikasi (Yanakiev dkk., 2024).

Penelitian yang dilakukan oleh Sinatria dkk. (2023), dengan tujuan untuk memberikan gambaran
dan panduan kepada pengembang tentang bagaimana mengorganisir aplikasi berbasis Flutter dengan
pendekatan Clean Architecture. Fokus utama dari penelitian ini adalah pada pembuatan modul-modul
modular dalam arsitektur aplikasi yang dapat digunakan kembali, serta implementasi prinsip SOLID
untuk meningkatkan fleksibilitas dan kemudahan pengembangan aplikasi.

Penelitian yang dilakukan oleh Abdillah dkk. (2024), mengimplementasikan Clean Architecture
pada aplikasi smart parking dengan fokus pada meningkatkan skalabilitas dan kemudahan
pemeliharaan. Penelitian ini menekankan pada struktur arsitektur yang modular dan terorganisir untuk
menghadapi perubahan kebutuhan sistem.

Berdasarkan beberapa penelitian terdahulu yang telah dilakukan, belum ada penelitian yang secara
spesifik mengevaluasi tingkat maintainability dari aplikasi berbasis Flutter yang menerapkan Clean
Architecture menggunakan metrik kualitas perangkat lunak yang terukur. Oleh karena itu, penelitian
ini bertujuan untuk mengimplementasikan Clean Architecture pada aplikasi mobile berbasis Flutter
sekaligus mengevaluasi tingkat maintainability-nya menggunakan McCall’s Software Quality Model.
Penelitian ini akan menggunakan aplikasi Al-Quran sebagai objek implementasi. Aplikasi ini
memiliki fitur-fitur utama seperti pembacaan ayat-ayat Al-Quran, terjemahan, tafsir, dan bookmark
untuk menandai ayat-ayat yang telah dibaca. Implementasi Clean Architecture pada aplikasi ini

https://doi.org/10.35145/joisie.v8i2.4763
JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

https://doi.org/10.35145/joisie.v8i2.4763

Azzigra, Implementasi Clean Architecture Pada Aplikasi Mobile
Al-Quran Berbasis Flutter, 344-380| 371

diharapkan dapat memberikan wawasan yang lebih terukur mengenai penerapan dan efektivitas
pendekatan ini dalam konteks aplikasi mobile berbasis Flutter.

2. METODE PENELITIAN

2.1

KERANGKA PENELITIAN
Terdapat beberapa tahapan yang telah diurutkan secara sistematis agar sesuai dengan pokok

pembahasan untuk mendapatkan hasil yang optimal dalam penelitian. Tahapan penelitian dapat dilihat
pada gambar 1.

2.2

| Studi Literatur ‘

v

| Perancangan Sistem ‘

v

Implementasi Clean
Architecture

| Pengujian ‘

Gambar 1. Kerangka Penelitian

Studi Literatur

Studi literatur dilakukan untuk mengumpulkan dan menganalisis literatur yang relevan terkait
Clean Architecture, prinsip SOLID, dan praktik terbaik dalam pengembangan aplikasi mobile.
Tahap ini dapat membantu penulis memperoleh pemahaman teoritis mengenai penelitian serta
membantu memahami konsep-konsep yang akan diterapkan (Rusydi & Nuryasin, 2024).
Perancangan Sistem

Pada tahap ini, dilakukan perancangan sistem dengan pendekatan Clean Architecture. Proses
ini melibatkan pembuatan struktur arsitektur berdasarkan prinsip SOLID. Perancangan ini
bertujuan untuk memberikan landasan yang jelas sebelum implementasi dilakukan.
Implementasi Clean Architecture

Tahap ini merupakan proses inti dari penelitian, di mana Clean Architecture diterapkan pada
pengembangan aplikasi mobile berbasis Flutter.
Pengujian

Pada tahap ini dilakukan pengujian untuk mengukur seberapa tingkat maintainability dari
aplikasi. Pengujian maintainability dilakukan dengan menggunakan metode McCall’s Software
Quality Model.

CLEAN ARCHITECTURE

Tujuan dari pola desain Clean Architecture adalah menyediakan standar yang memungkinkan

pemisahan logika bisnis dari lapisan antarmuka pengguna. Pemisahan ini bertujuan untuk memastikan
bahwa perubahan pada satu lapisan tidak berdampak langsung pada lapisan lain, sehingga
meningkatkan fleksibilitas dan efisiensi pemeliharaan (Yadati, 2023). Gambaran dari Clean
Architecture dapat dilihat pada gambar 2.

Data Source
Repository
__—Domain Layer

__~Presentation Layer

/,zData & Platform Layer

Gambar 2. Diagram Clean Architecture

https://doi.org/10.35145/joisie.v8i2.4763

JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

https://doi.org/10.35145/joisie.v8i2.4763

372 | Jurnal JOISIE, Volume 8, Nomor 2, Desember 2024

Clean Architecture, yang terdiri dari domain layer, data layer, dan presentation layer. Model
arsitektur berlapis seperti ini memungkinkan aplikasi mobile yang dikembangkan bersifat framework-
agnostic, vyaitu logika bisnisnya tidak terikat pada framework eksternal tertentu, sehingga
mempermudah proses pemeliharaan dan pengembangan di masa depan (Wijayanto dkk., 2023).

Penerapan Clean Architecture juga mengikuti prinsip-prinsip SOLID. SOLID meliputi lima
prinsip utama, yaitu:

a. Single Responsibility Principle (SRP) memastikan setiap kelas atau modul memiliki satu
tanggung jawab utama sehingga setiap komponen akan memiliki peran yang jelas dan spesifik
(Sinatria dkk., 2023).

b. Open Closed Principle (OCP) yaitu kelas atau modul sebaiknya terbuka untuk ekstensi namun
tertutup untuk modifikasi, sehingga kelas bisa diperluas tanpa harus memodifikasi kode yang ada
(Cabral dkk., 2024).

c. Liskov Substitution Principle (LSP) menyatakan bahwa objek dari kelas turunan harus dapat
menggantikan objek dari kelas induknya tanpa menyebabkan ketidaksesuaian atau perubahan
pada keabsahan program (Ramachandrappa, 2024).

d. Interface Segregation Principle (ISP) menekankan bahwa jika sebuah fungsionalitas akan
dimanfaatkan oleh berbagai kelas, maka perlu dibuat interface yang spesifik untuk setiap kelas.
Tujuan dari prinsip ini adalah mencegah terjadinya kompilasi ulang yang tidak diperlukan dan
mengurangi ketergantungan antar komponen (Sanchez dkk., 2022).

e. Dependency Inversion Principle (DIP) mengurangi ketergantungan pada kelas konkret dengan
berfokus pada abstraksi (Sinatria dkk., 2023).

Penerapkan prinsip-prinsip tersebut dapat meningkatkan keterbacaan, mengurangi kompleksitas
kode, mudah untuk di uji, kode dapat digunakan kembali, dan mengurangi ketergantungan yang tinggi
antar kode serta memungkinkan pengembangan dan pemeliharaan aplikasi yang lebih efektif dan
efisien (Oktafiani & Saputra, 2022).

2.3 MCCALL’S SOFTWARE QUALITY MODEL

McCall’s Software Quality Model menyediakan pendekatan yang terstruktur untuk mengevaluasi
dan meningkatkan kualitas perangkat lunak. Model ini memiliki tiga aspek utama: Product Operation,
yang mencakup sifat-sifat operasional perangkat lunak; Product Revision, yang menyoroti
kemampuan perangkat lunak untuk menghadapi perubahan; dan Product Transition, yang
menggambarkan kemampuan perangkat lunak untuk beradaptasi dengan lingkungan baru (Salamudin
dkk., 2024).

Aspek maintainability sendiri termasuk kedalam Product Revision (Mulatsari dkk., 2023).
Quality metric pada McCall’s Software Quality Model dapat dihitung menggunakan rumus (1).
G My + G My + o4 Gy My,
G+ G+t G =1 (1)
0<M<1|0<C<1

Quality Metric (F) dihitung dengan menjumlahkan hasil perkalian setiap quality factor (M)
dengan bobotnya (C). Total bobot pada quality metric berkisar antara 0 hingga 1, dengan jumlah
keseluruhan bobot adalah 1. Setiap quality metric memiliki quality factor tertentu yang memengaruhi
nilainya. Nilai masing-masing quality factor diperoleh dengan membandingkan jumlah positive case
terhadap test case yang relevan. Dalam McCall’s Software Quality Model, kualitas maintainability
ditentukan oleh beberapa faktor, yaitu simplicity, conciseness, consistency, instrumentation,
modularity, dan self-documentation. (Muthmainnah & Putro, 2023).

Sondha dkk. (2020) menjelaskan bahwa conciseness mengukur rasio antara jumlah total kelas
dan Logical Lines of Code (LLOC) dalam sebuah aplikasi. Modularity adalah quality factor yang
menilai tingkat ketergantungan antar komponen untuk menentukan apakah suatu kelas memiliki
tingkat coupling yang tinggi atau rendah. Self-documentation mengacu pada sejauh mana kode sumber
menyediakan dokumentasi yang jelas, sedangkan simplicity merujuk pada kemudahan dalam
memahami program. Kedua faktor ini, self-documentation dan simplicity, diukur berdasarkan nilai

https://doi.org/10.35145/joisie.v8i2.4763
JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

https://doi.org/10.35145/joisie.v8i2.4763

Azzigra, Implementasi Clean Architecture Pada Aplikasi Mobile
Al-Quran Berbasis Flutter, 344-380| 373

clean code, yang mencakup aspek seperti konvensi penamaan, aturan kapitalisasi, dan komentar.
Dalam penelitian ini, setiap quality factor untuk menghitung maintainability diberi bobot yang sama,
yaitu 0,167.

Total quality metric digunakan untuk mengevaluasi kelayakan aspek yang dianalisis, dengan
kategori yang dibagi menjadi lima berdasarkan rentang persentase. Pembagian kategori kelayakan
sesuai rentang persentase dapat dilihat pada tabel 1.

Tabel 1. Kategori kelayakan (Hanes dkk., 2020)

No. Kategori Presentase
1 Sangat Baik 81% - 100%
2 Baik 61% - 80%
3 Cukup Baik 41% - 80%
4 Tidak Baik 21% - 40%
5 Sangat Tidak Baik <21%

3. HASIL DAN PEMBAHASAN
3.1 PERANCANGAN SISTEM

Tahapan perancangan sistem ini bertujuan untuk memisahkan logika bisnis dari tampilan aplikasi
dengan menerapkan Clean Architecture. Desain sistem mencakup tiga layer utama yaitu domain layer,
data layer, dan presentation layer. Struktur perancangan divisualisasikan pada gambar 3.

Interface Segregation

\SurahReuus\tory(------ implements = === ====-- SurahRepository
Liscov Substitution

Open/Close

repositories

Surah extends SurahModel

Domain Layer Presentation Layer

GetAllSurah == ==-======-- N
Local Source

sources

GetBookmark - - - - - - - -~

N
Single Responsibility dependency
.

BookmarkBloc €- - - - - - - !

'
SurahBloc €------------ [services

errors

core

Dependency Inversion

Presentation Layer

Gambar 3. Diagram rancangan arsitektur sistem berdasarkan Clean Architecture dan prinsip SOLID

Diagram rancangan sistem pada gambar 3 menunjukkan penerapan Clean Architecture. Tujuan
utama dari desain tersebut adalah untuk mencapai pemisahan tanggung jawab yang jelas (Wijayanto
dkk., 2023).

Domain layer mencakup logika inti aplikasi yang meliputi entities, use cases, dan interface
repository. Entities merepresentasikan objek utama dalam domain, sedangkan use cases bertanggung
jawab untuk mengatur alur bisnis aplikasi. Pada lapisan ini, prinsip Single Responsibility Principle
(SRP) diterapkan untuk memastikan bahwa setiap kelas hanya memiliki satu tanggung jawab utama.
Penerapan Open/Close Principle (OCP) memungkinkan penambahan fungsionalitas baru tanpa harus
mengubah kode yang telah ada. Sementara itu, penerapan Dependency Inversion Principle (DIP)
memastikan bahwa lapisan ini bergantung pada abstraksi, bukan implementasi. Getlt digunakan

https://doi.org/10.35145/joisie.v8i2.4763
JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

https://doi.org/10.35145/joisie.v8i2.4763

374 | Jurnal JOISIE, Volume 8, Nomor 2, Desember 2024

sebagai dependency injection untuk menyuntikkan dependensi antar lapisan, memungkinkan objek
seperti use cases atau repository diakses tanpa perlu mengetahui detail implementasinya.

Data layer berfungsi untuk mengelola akses data dari sumber lokal maupun eksternal. Lapisan
ini terdiri dari repositories, models, dan sources. Repositories berperan sebagai penghubung antara
domain layer dan data source, sementara models bertugas memetakan data ke dalam format yang
sesuai dengan kebutuhan domain. Penerapan Interface Segregation Principle (ISP) memastikan
bahwa interface dipecah menjadi bagian yang lebih spesifik untuk menghindari ketergantungan yang
tidak perlu. Selain itu, Liskov Substitution Principle (LSP) diterapkan untuk memastikan bahwa setiap
subclass dapat menggantikan superclass tanpa memengaruhi fungsi aplikasi.

Presentation layer menangani penyajian data kepada pengguna dengan menggunakan bloc
sebagai state management utama. Bloc berfungsi sebagai mediator antara logika bisnis dan antarmuka
pengguna, memastikan bahwa perubahan data ditampilkan secara reaktif. Core layer menyediakan
fungsi pendukung seperti utils, services, dan error handling yang digunakan bersama oleh berbagai
lapisan.

3.2 IMPLEMENTASI

Pada tahap implementasi, penelitian ini menerapkan Clean Architecture dalam pengembangan
aplikasi Al-Quran berbasis Flutter. Struktur Clean Architecture yang diterapkan terdiri dari dua
komponen, yaitu core dan features, seperti yang ditampilkan pada gambar 4.

B common
» @ database
» W@ emor
» g theme
> W@ utils
~ [features
> B bookmark
~ [surah
> @ data
> B domain

= presentation

Gambar 4. Struktur folder Clean Architecture

Lapisan core bertindak sebagai penghubung antara inti aplikasi, yang berisi logika bisnis dan
entitas, dengan lingkungan eksternal. Tujuan utama dari lapisan core adalah untuk memastikan
modularitas dan fleksibilitas sistem, sehingga pembaruan atau penggantian dependensi eksternal dapat
dilakukan tanpa memengaruhi inti aplikasi.

Sementara itu, lapisan features bertanggung jawab mengelola dan memisahkan fitur-fitur aplikasi
menjadi beberapa bagian yang lebih kecil sesuai fungsi masing-masing. Pemisahan ini bertujuan
untuk membagi basis kode menjadi komponen-komponen yang terorganisir, modular, dan sesuai
dengan kebutuhan setiap fitur aplikasi. Setiap fitur dalam lapisan ini terdiri dari tiga lapisan utama,
yaitu domain layer, data layer, dan presentation layer, yang dirancang berdasarkan prinsip Clean
Architecture.

3.2.1 Domain Layer

Untuk memastikan aplikasi yang dapat dipelihara dan dikembangkan secara skalabel, keberadaan
domain layer menjadi sangat penting. Dengan memusatkan logika bisnis utama pada lapisan ini,
pengembang memiliki fleksibilitas untuk menyesuaikan dan meningkatkan fungsi aplikasi tanpa
mempengaruhi komponen sistem lainnya.

https://doi.org/10.35145/joisie.v8i2.4763
JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

https://doi.org/10.35145/joisie.v8i2.4763

Azzigra, Implementasi Clean Architecture Pada Aplikasi Mobile
Al-Quran Berbasis Flutter, 344-380| 375

~ [domain
~ [entities
& quran_surah.dart

~ [repositories
& surah_repository.dart
~ [usecases
get_all_surah.dart
get_last_read.dart
get_surah_by_id.dart

insert_last_read.dart
Gambar 5. Struktur domain layer

Berdasarkan gambar 5, domain layer terdiri dari usecases, repositories dan entities. Entities
merepresentasikan objek bisnis inti seperti “quran_surah.dart”, yang bertugas memodelkan dan
mengelola data utama yang terkait dengan aplikasi. Sementara itu, repositories seperti
“surah_repository.dart” bertindak sebagai penghubung antara domain layer dan data layer,
menyediakan metode-metode untuk mengakses dan memanipulasi data yang diperlukan. Komponen
usecases merepresentasikan operasi atau tindakan bisnis spesifik, seperti “get all surah.dart”,
“get_last_read.dart”, “get_surah_by _id.dart”’dan “insert_last_read”, yang dirancang untuk
menjalankan alur kerja bisnis tertentu secara efisien.

Pada layer ini dapat diterapkan dua prinsip SOLID yaitu single responsibility principle (SRP)
dan dependency inversion principle (DIP). Contoh implementasi dari prinsip-prinsip tersebut dapat
dilihat pada gambar 6.

1 abstract class SurahRepository {

2 Future<Either<Failure, List<QuranSurah>>> getAllsurah();

3 Future<Either<Failure, List<QuranSurah>>> getSurahById(int id);
4 Future<Either<Failure, void>> removeBookmark(int id);

5 Future<Either<Failure, List<Bookmark>>> getBookmarks();

6 Future<Either<Failure, void>> insertLastRead(LastRead lastRead);
7 Future<Either<Failure, LastRead>> getlLastRead();

8 Future<Either<Failure, void>> addBookmark(

9 Ayah ayat,

18 int nomorSurah,

11 int numberInluz,

12 String namaSurah,

13 String via,

14)

Gambar 6. Class SurahRepository

Pada gambar 6, terdapat kelas “SurahRepository” yang merupakan sebuah kelas abstrak yang
mendefinisikan berbagai metode untuk interaksi dengan data. Kelas ini berfungsi sebagai antarmuka
yang mendefinisikan kontrak umum vyang terkait pada fitur Surah tanpa memberikan detail
implementasinya. Kemudian, kelas tersebut akan diimplementasikan oleh kelas yang ada pada
usecase.

1class GetAllSurah implements Usecase<List<QuranSurah>, NoParams> {
2 final SurahRepository surahRepository;

GetAllSurah(this. surahRepository);
Future<Either<Failure, List<QuranSurah>>> call(NoParams params) async {

return await surahRepository.getAllsurah();

}

3
4
5
6 @override
7
8
9
a8

1)

Gambar 7. Class GetAllSurah

2

Salah satunya adalah kelas “GetAllSurah” yang bergantung pada abstraksi “SurahRepository
untuk menampilkan data surah, bukan pada implementasi konkret dari “SurahRepository”. Ini
merupakan contoh penerapan Dependency Inversion Principle (DIP). Untuk mendukung
penerapannya digunakan library Getlt untuk dependency injection. Dalam hal ini,
“SurahRepositoryImpl” didaftarkan pada Getlt sebagai implementasi dari “SurahRepository”,
sehingga “GetAllSurah” dapat memperoleh abstraksinya secara otomatis. Contoh kode pendaftaran
dapat dilihat pada gambar 8.

https://doi.org/10.35145/joisie.v8i2.4763
JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

https://doi.org/10.35145/joisie.v8i2.4763

376 | Jurnal JOISIE, Volume 8, Nomor 2, Desember 2024

1 void _initSurah() {

2 // DataSource

3 servicelocator

4 ..registerFactory<SurahLocalDataSource>(
5 () => SurahLocalDataSourceImpl(),
6

7 // Repository

8 . .registerFactory<SurahRepository>(
9 () => SurahRepositoryImpl(
1e servicelocator(),
11 servicelocator(),
12),
13
14 // kode lainnya
15}

Gambar 8. Pendaftaran dependency menggunakan Getlt

Selain itu, terdapat implementasi dari single responsibility principle (SRP) yang terdapat pada
usecases, dapat dilihat pada pada gambar 5. Masing-masing usecase memiliki tanggung jawab tunggal
untuk menyelesaikan satu alur kerja bisnis yang spesifik.

3.2.2 Data Layer

Data layer memiliki peran utama dalam pengelolaan sumber data, repository, dan model dalam
arsitektur aplikasi. Lapisan ini berperan sebagai penghubung antara domain aplikasi dengan berbagai
sumber data eksternal, serta memfasilitasi akses dan manipulasi data.

~ [data
~ [datasources
& surah local data source.dart

~ [i® models

& quran_surah_model.dart

~ [repositories

& surah_repository_impl.dart
Gambar 9. Struktur data layer

Berdasarkan Gambar 9, struktur data layer terdiri atas tiga bagian utama: datasources, models,
dan repositories. Datasources, seperti file “surah_local_data_source.dart”, bertugas mengambil dan
menyimpan data dari sumber lokal dalam format aslinya. Models, seperti file
“quran_surah_model.dart”, merepresentasikan data dari datasource dan mengonversinya ke format
yang siap digunakan di domain layer. Repositories, seperti file “surah_repository impl.dart”,
menghubungkan data layer dan domain layer dengan mengambil data dari datasource, mengubahnya
ke model yang sesuai, dan menyediakannya untuk usecase.

Pada data layer, tiga prinsip SOLID dapat diterapkan, yaitu Single Responsibility Principle
(SRP), Open/Closed Principle (OCP), dan Liskov Substitution Principle (LSP). Contoh penerapannya
dalam sebuah aplikasi dapat dilihat pada gambar 10, 11, dan 12.

1 abstract class SurahlLocalDataSource {

2 Future<List<QuranSurahModel>> getAllSurah();

3 Future<List<QuranSurahModel>> getSurahById(int id);
4}

Gambar 10. Implementasi OCP pada data layer

Pada gambar 10, terdapat kelas “SurahLocalDataSource ” yang merupakan sebuah kelas abstrak
yang mendefinisikan metode untuk mendapatkan data Surah dari sumber lokal. Kelas ini mengikuti
open/closed principle (OCP). Dengan menggunakan kelas abstrak ini, fungsionalitas kelas dapat
diperluas dengan membuat kelas turunan yang mengimplementasikan metode yang didefinisikan
tanpa harus mengubah kelas “SurahLocalDataSource " itu sendiri.

https://doi.org/10.35145/joisie.v8i2.4763
JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

https://doi.org/10.35145/joisie.v8i2.4763

Azzigra, Implementasi Clean Architecture Pada Aplikasi Mobile
Al-Quran Berbasis Flutter, 344-380| 377

1class SurahlocalbataSourcelmpl extends SurahLocalPataSource {

Futur <QuranSurahiodels>s getAllSurah() async {

jsonString = await rootB cadString(surah.json');

<dynamics jsonlist = json.decode(jsonsString);

ransurahtiodel> surahList = QuranSurahModel.fromJsonList(jsonList);
5 surahList;

9 } catch (e) {

1@ throw LocalException(e.toString());

13 // kede lainnya

Gambar 11. Implementasi SRP pada data layer

Pada gambar 11, “SurahLocalDataSourcelmpl” mengimplementasi “SurahLocalDataSource .
Kelas ini bertanggung jawab untuk membaca data Surah dari sumber lokal. Kelas ini menerapkan
Single Responsibility Principle (SRP) karena hanya memiliki satu tanggung jawab utama yaitu
pengelolaan data Surah dari sumber lokal. Dengan memisahkan tanggung jawab ini ke dalam kelas
tersendiri, kelas tersebut fokus pada satu tugas spesifik. Pemisahan tanggung jawab ini meminimalkan
kompleksitas dan membuat kode lebih terstruktur.

1 class SurahModel extends Surah {
2 const SurahModel({

3 required super.nomor,

4 required super.nama,

5 required super.namaLatin,

& required super.jumlahAyat,
7
8

I H

9 factory SurahModel.fromlson(Map<String, dynamic> jsen) {
1e return SurahModel(

11 nemer: json["nemor”],

12 nama: json["nama"],

13 namalatin: json["namalatin"],
14 jumlahAyat: json["jumlahAyat"].
1s Vs

16 3}

17
18 (@override
19 Map<String, dynamic> tolson() =» {

2e “nomor": nomor,

21 "nama": nama,

22 "namalLatin®: namalatin,
23 “jumlahAyat”: jumlahAyat,
24 s

25}

Gambar 12. Implementasi LSP pada data layer

Pada gambar 12, terdapat kelas “SurahModel ” yang merupakan turunan dari kelas Surah. Kelas
ini menerapkan Liskov Substitution Principle (LSP). Kelas SurahModel memperluas kelas Surah
dengan menambahkan metode tambahan seperti “fromJson” dan “toJson” untuk konversi data.
Dengan demikian, objek “SurahModel ” dapat digunakan di mana saja objek Surah digunakan, tanpa
memerlukan perubahan pada kode yang menggunakan objek Surah.

3.2.3 Presentation Layer
Presentation layer adalah lapisan dalam arsitektur aplikasi yang berfungsi sebagai antarmuka
utama antara pengguna dan sistem menggunakan Bloc pattern.

~ (i@ presentation
~ @ bloc) surah_bloc
surah_bloc.dart
surah_event.dart
surah_state.dart
~ [Wg pages

& detail_surah_page.dart

& list_surah.dart
> IR widgets

Gambar 13. Struktur presentation layer

Berdasarkan gambar 13, presentation layer terdiri dari bloc, pages, dan widgets. Bloc
bertanggung jawab atas pengelolaan state aplikasi dan logika bisnis yang terkait dengan tampilan
(Munawar dkk., 2021). Arsitektur dari Bloc pattern dapat dilihat pada gambar 14.

https://doi.org/10.35145/joisie.v8i2.4763
JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

https://doi.org/10.35145/joisie.v8i2.4763

378 | Jurnal JOISIE, Volume 8, Nomor 2, Desember 2024

£&—— states —— request —>
ul Data
events — response ——

Gambar 14. Bloc pattern (Zulistiyan dkk., 2024)

Pada bagian bloc terdiri dari tiga komponen utama, yaitu “surah_bloc.dart” yang menjadi inti
implementasi dari Bloc untuk fitur surah, “surah_event.dart” yang mendefinisikan berbagai event
yang dapat memicu perubahan state, dan “surah_state.dart” yang berisi berbagai state yang dapat
terjadi selama pengelolaan fitur surah.

Pages merepresentasikan halaman-halaman dalam aplikasi. Sedangkan widgets adalah elemen-
elemen Ul dasar yang digunakan untuk membangun tampilan. Setiap widget memiliki tanggung jawab
tunggal untuk menampilkan satu elemen visual atau interaksi tertentu.

3.3 PENGUJIAN MAINTAINABILITY

Pengujian dilakukan dengan menghitung nilai dari quality factor, yaitu simplicity, conciseness,
consistency, instrumentation, modularity dan self-documentation. Hasil dari pengujian ini
memberikan gambaran tentang tingkat maintainability pada aplikasi. Hasil pengujian dapat dilihat
pada tabel 2.

Tabel 2. Hasil Pengujian Tingkat Maintainability

Quality Factor Positive Case dan Test Case Nilai M C F
. Banyaknya Class 129
Conciseness LLOC 1185 0,11 0,167 0,02
. Fitur sesuai desain 4
Consistency Fitur yang di desain 4 1 0,167 0,17
Fitur punya instrumentasi 4
Instrumentation Fitur yang seharusnya punya 4 1 0,167 0,17
instrumentasi
. Class yang loose coupling 118
Modularity Banyaknya Class 129 0.91 0,167 0,15
Self- Class yang clean code 111
Documentation Banyaknya Class 129 0.86 0.167 0.14
L Fungsi yang clean code 150
Simplicity Banyaknya fungsi 182 0.82 0,167 0,14
Total 0,79

Hasil pengujian pada tabel 2 menunjukkan bahwa tingkat maintainability aplikasi mencapai 0,79
atau 79%, yang berada dalam kategori "baik™ menurut skala penilaian pada tabel 1. Faktor modularity
memperoleh nilai tertinggi sebesar 0,15 dari total 0,167, menunjukkan bahwa arsitektur aplikasi
berhasil meminimalkan ketergantungan antar komponen. Modularitas yang baik mencerminkan
keberhasilan penerapan prinsip desain seperti Single Responsibility Principle (SRP) dan Dependency
Inversion Principle (DIP), yang memisahkan tanggung jawab setiap komponen dengan jelas.

Sebaliknya, quality factor conciseness memiliki nilai terendah, yaitu 0,02, akibat tingginya
jumlah Logical Lines of Code (LLOC) pada beberapa kelas, terutama di presentation layer. Hal ini
disebabkan oleh sifat presentation layer yang cenderung menampung banyak elemen visual dan
logika interaksi pengguna. Kondisi ini dapat diatasi dengan melakukan refaktorisasi kode melaui
teknik seperti extract widget atau extract method, sehingga elemen-elemen Ul yang berulang atau
kompleks dipisahkan menjadi widget atau metode tersendiri.

4. SIMPULAN

Berdasarkan hasil pengujian maintainability, implementasi Clean Architecture pada aplikasi Al-
Quran berbasis Flutter dapat dinyatakan berhasil dengan tingkat maintainability mencapai 79%, yang
berada dalam kategori "baik". Aplikasi yang dikembangkan berjalan dengan baik, memenuhi semua
fungsionalitas utama, seperti pembacaan ayat-ayat Al-Quran, terjemahan, tafsir, dan bookmark untuk
menandai ayat yang telah dibaca. Faktor modularity memberikan kontribusi tertinggi terhadap

https://doi.org/10.35145/joisie.v8i2.4763
JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

https://doi.org/10.35145/joisie.v8i2.4763

Azzigra, Implementasi Clean Architecture Pada Aplikasi Mobile
Al-Quran Berbasis Flutter, 344-380| 379

maintainability, menegaskan bahwa prinsip Single Responsibility dan Dependency Inversion telah
diterapkan dengan baik untuk memisahkan tanggung jawab setiap komponen.

Namun, faktor conciseness menunjukkan nilai yang lebih rendah akibat tingginya jumlah Logical
Lines of Code (LLOC) pada beberapa komponen, terutama di presentation layer. Hal ini menunjukkan
bahwa meskipun aplikasi berjalan dengan baik, diperlukan upaya refaktorisasi kode untuk mengurangi
kompleksitas, meningkatkan keterbacaan, dan menjaga efisiensi pengembangan di masa mendatang.

Dengan hasil yang diperoleh, implementasi ini memberikan dasar yang kokoh untuk
pengembangan aplikasi yang lebih baik di masa depan, meskipun perbaikan lanjutan pada aspek
pengelolaan kode dan pengujian tambahan tetap diperlukan untuk menjaga kualitas perangkat lunak.

5. DAFTAR PUSTAKA

Abdillah, F., Sirojudin, A., Amin, M. Y., & Atmadji, E. S. J. (2024). Analisis Skalabilitas Aplikasi
Smart Parking Melalui Penerapan Clean Architecture. METHOMIKA Jurnal Manajemen
Informatika dan Komputerisasi Akuntansi, 8(1), 96-104.
https://doi.org/10.46880/jmika.\VVol8No1.pp96-104

Anhar, F. F., Swari, M. H. P., & Aditiawan, F. P. (2024). Analisis Perbandingan Implementasi Clean
Architecture Menggunakan MVP, MVI, Dan MVVM Pada Pengembangan Aplikasi Android
Native. Jupiter: Publikasi llmu Keteknikan Industri, Teknik Elektro dan Informatika, 2(2), 181—
191. https://doi.org/10.61132/jupiter.v2i2.155

Badrudduja, Moh. H., & Putra, R. E. (2022). Penerapan Clean Architecture pada Aplikasi Pemesanan
Makanan menggunakan Metode Slope One Algorithm. Journal of Informatics and Computer
Science (JINACS), 3(04), 506-514. https://doi.org/10.26740/jinacs.v3n04.p506-514

Bhagat, S. A. (2022). Review on Mobile Application Development Based on Flutter Platform.
International Journal for Research in Applied Science and Engineering Technology, 10(1), 803—
809. https://doi.org/10.22214/ijraset.2022.39920

Cabral, R., Kalinowski, M., Baldassarre, M. T., Villamizar, H., Escovedo, T., & Lopes, H. (2024).
Investigating the Impact of SOLID Design Principles on Machine Learning Code
Understanding. Proceedings of the IEEE/ACM 3rd International Conference on Al Engineering
- Software Engineering for Al, 7-17. https://doi.org/10.1145/3644815.3644957

Deta Aditya, M., Susanty, M., & Artikel, 1. (2022). Studi Komparasi Maintainability Antara Aplikasi
yang Dikembangkan dengan Framework Flutter dan React Native. JURNAL INFORMATIKA,
9(2). http://ejournal.bsi.ac.id/ejurnal/index.php/ji

Hanes, H., Angela, A., & Br Sembiring, S. (2020). Pengukuran Kualitas Website Penjualan Tiket
Dengan Menggunakan Metode Mccall. JTIK (Jurnal Teknik Informatika Kaputama), 4(2), 81—
88. https://doi.org/10.59697/jtik.v4i2.595

Ikhwan, A., Khalis Nugraha, R., Syahnur, E. A., & Ridho, R. (2023). Perancangan Aplikasi Penilaian
Kinerja Driver Menggunakan Kodular di Pt Perkebunan Nusantara 111 Berbasis Mobile. JOISIE
Journal Of Information System And Informatics Engineering, 7(2), 364-374.
https://doi.org/https://doi.org/10.35145/joisie.v7i2.4001

Laksono, W. P., Satria, B., Wicaksana, T., Wijasena, A. Y., & Sahria, Y. (2024). Implementasi Clean
Architecture Dalam Membangun Aplikasi Mobile Menggunakan Flutter. Nusantara Journal of
Multidisciplinary Science, 2(1), 173-180. https://jurnal.intekom.id/index.php/njms

Mulatsari, W. E., Candrasari, D. M., & Suyudi, S. (2023). Sistem Informasi Pelayanan Administrasi
Kependudukan Kelurahan Kenteng Berbasis Website dengan Uji Kualitas Sistem Menggunakan
Metode Mccall Software Quality. Joined Journal (Journal of Informatics Education), 6(1), 22.
https://doi.org/10.31331/joined.v6i1.2597

Munawar, G., Prayoga, R. R., Jumiyani, R., & Syalsabila, A. (2021). Performance Analysis of BLoC
and Provider State Management Library on Flutter. Jurnal Mantik, 5(3), 1591-1597.

Muslim, Sari, R. P., & Rahmayuda, S. (2022). Implementasi Framework Flutter Pada Sistem
Informasi Perpustakaan Masjid (Studi Kasus: Masjid Di Kota Pontianak). Coding Jurnal
Komputer dan Aplikasi, 10(1), 46-59.
https://doi.org/https://dx.doi.org/10.26418/coding.v10i01.52178

https://doi.org/10.35145/joisie.v8i2.4763
JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

https://doi.org/10.35145/joisie.v8i2.4763

380 | Jurnal JOISIE, Volume 8, Nomor 2, Desember 2024

Muthmainnah, S. F., & Putro, H. P. (2023). Pengujian Nonfungsional dengan Pendekatan McCall’s
Factor pada Perspektif Product Revision. AUTOMATA, 4(2).

Oktafiani, 1., & Saputra, M. F. A. (2022). Pengembangan Aplikasi SOLID-Calculator untuk
Pengukuran Kualitas Desain Diagram Kelas. Jurnal Sains dan Informatika, 8(1).
https://doi.org/10.22216/jsi.v8i1.959

Ramachandrappa, N. C. (2024). SOLID Design Principles in Software Engineering. International
Journal of Computer Trends and Technology, 72(9), 18-23.
https://doi.org/10.14445/22312803/IJCTT-V7219P104

Rusydi, M. H., & Nuryasin, I. (2024). Perancangan Ul/UX Aplikasi Hidup Sehat Berbasis Mobile
Menggunakan Metode Design Thinking. JOISIE Journal Of Information Systems And
Informatics Engineering, 8(1), 54-64. https://doi.org/10.35145/joisie.v8i1.4168

Salamudin, S., Hartati, S., Saputro, H., & Meilantika, D. (2024). Evaluasi Kualitas Portal E-lerning
Universitas Mahakarya Asia Menggunakan Metode MCCALL. Jurnal Nasional IImu Komputer,
5(1), 16-24. https://doi.org/10.47747/jurnalnik.v5i1.1606

Sanchez, D., Rojas, A. E., & Florez, H. (2022). Towards a Clean Architecture for Android Apps using
Model Transformations. International Journal of Computer Science, 49(1).
https://www.iaeng.org/l1JCS/issues_v49/issue_1/1JCS 49 1 28.pdf

Sinatria, M. B., Oman Komarudin, & Kamal Prihamdani. (2023). Penerapan Clean Architecture
Dalam Membangun Aplikasi Berbasis Mobile Dengan Framework Google Flutter. INFOTECH
journal, 9(1), 132-146. https://doi.org/10.31949/infotech.v9i1.5237

Sondha, A. T., Sa’adah, U., Hardiansyah, F. F., & Rasyid, M. B. A. (2020). Framework dan Code
Generator Pengembangan Aplikasi Android dengan Menerapkan Prinsip Clean Architecture.
Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 9(4), 327-335.
https://doi.org/10.22146/jnteti.v9i4.572

Subagio, A. W., & Muttaqgin, F. (2022). Penerapan Clean Architecture pada Pengembangan Sistem
Payment Point Online Bank. Jurusan Teknik Elektro, 32(2), 324-333.
https://doi.org/http://dx.doi.org/10.17977/um034v32i2p324-333

Widiarta, I. M., Julkarnain, M., & Imanulloh, J. (2021). Rancang Bangun Aplikasi Uts In Me Berbasis
Android Menggunakan Flutter Dengan Metode Rapid Application Development. Jurnal
Informatika Teknologi dan Sains, 3(4), 447—-452. https://doi.org/10.51401/jinteks.v3i4.1323

Wijayanto, R. A., Hajar, R. R., & Sejati, P. (2023). Implementing Flutter Clean Architecture for
Mobile Tourism Application Development. International Journal of Computer Applications,
185(39), 23-30.

Yadati, N. S. P. K. (2023). Architecture Design (MVVM + Clean Architecture). Journal of Artificial
Intelligence, Machine Learning and Data Science, 1(3), 703-706.
https://doi.org/10.51219/JAIMLD/naga-satya-praveen-kumar-yadati/177

Yanakiev, I., Lazar, B.-M., & Capiluppi, A. (2024). Applying SOLID principles for the refactoring of
legacy code: An experience report. Journal of Systems and Software, 220, 112254.
https://doi.org/10.1016/j.jss.2024.112254

Zulistiyan, M., Adrian, M., & Wibowo, Y. F. A. (2024). Performance Analysis of BLoC and GetX
State Management Library on Flutter. Journal of Information System Research (JOSH), 5(2),
583-591. https://doi.org/10.47065/josh.v5i2.4698

https://doi.org/10.35145/joisie.v8i2.4763
JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

https://doi.org/10.35145/joisie.v8i2.4763

