
JOISIE (Journal Of Information Systems And Informatics Engineering)

Vol. 8, No.2, Desember 2024, Hlm 369-380

Received: 26 November 2024, Revised: 23 Desember 2024, Accepted: 31 Desember2024

https://doi.org/10.35145/joisie.v8i2.4763

JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

p- ISSN: 2503-5304

e- ISSN: 2527-3116

IMPLEMENTASI CLEAN ARCHITECTURE PADA APLIKASI MOBILE

AL-QURAN BERBASIS FLUTTER

M. Zihad Azziqra1), Ilyas Nuryasin2)

1,2 Prodi Informatika, Universitas Muhammadiyah Malang, Jl. Raya Tlogomas No.246, Babatan, Tegalgondo,

Kota Malang.

email: 1azziqrazihad@webmail.umm.ac.id, 2ilyas@umm.ac.id

Abstract

Flutter-based mobile application development is gaining popularity due to its cross-platform

development efficiency. However, maintainability is a major challenge to overcome in application

development. Software maintenance costs are estimated to account for up to 79%-90% of the total

application development costs, so maintainability becomes an important factor in ensuring software

quality. Based on these issues, this research focuses on the implementation of Clean Architecture in

Flutter-based mobile applications, using the Al-Quran application as a case study, and evaluates its

maintainability level using McCall's Software Quality Model. Clean Architecture was chosen for its

approach of separating business logic, data access, and user interface into structured layers. The

implementation results show a maintainability level of 79%, which is rated as "good". Clean

Architecture successfully supports application modularity and flexibility through the application of

SOLID principles, specifically the Single Responsibility Principle and the Dependency Inversion

Principle. This research provides insight into the effectiveness of implementing Clean Architecture in

the development of Flutter-based mobile applications.

Keywords: Android, Clean Architecture, Flutter, Maintainability, McCall Software Quality Model.

Abstrak

Pengembangan aplikasi mobile berbasis Flutter semakin populer karena efisiensi pengembangan

multi-platform yang ditawarkannya. Namun, maintainability menjadi tantangan utama yang harus

diatasi dalam pengembangan aplikasi. Biaya pemeliharaan perangkat lunak diperkirakan

menyumbang hingga 79%-90% dari total biaya pengembangan aplikasi, sehingga maintainability

menjadi faktor penting dalam memastikan kualitas perangkat lunak. Berdasarkan permasalahan

tersebut, penelitian ini berfokus pada implementasi Clean Architecture pada aplikasi mobile berbasis

Flutter, dengan aplikasi Al-Quran sebagai studi kasus, serta mengevaluasi tingkat maintainability-nya

menggunakan McCall's Software Quality Model. Clean Architecture dipilih karena pendekatannya

yang memisahkan logika bisnis, akses data, dan antarmuka pengguna ke dalam lapisan-lapisan yang

terstruktur. Hasil implementasi menunjukkan tingkat maintainability sebesar 79%, yang

dikategorikan "baik". Clean Architecture berhasil mendukung modularitas dan fleksibilitas aplikasi

melalui penerapan prinsip SOLID, khususnya Single Responsibility Principle dan Dependency

Inversion Principle. Penelitian ini memberikan wawasan tentang efektivitas penerapan Clean

Architecture dalam pengembangan aplikasi mobile berbasis Flutter.

Kata kunci: Android, Clean Architecture, Flutter, Maintainability, McCall Software Quality

Model.

1. PENDAHULUAN

Perkembangan teknologi yang pesat telah membawa perubahan signifikan dalam pengembangan

perangkat lunak, termasuk aplikasi mobile yang kini menjadi salah satu alat utama dalam berbagai

sektor kehidupan. Aplikasi mobile, yang dirancang untuk perangkat seperti smartphone dan tablet,

kini menjadi solusi untuk meningkatkan efisiensi dan produktivitas pengguna (Ikhwan dkk., 2023).

Di Indonesia, penggunaan aplikasi berbasis Android mencapai 92,03% pada Februari 2021, dengan

lebih dari 2,9 juta aplikasi terdaftar di Google Play Store (Badrudduja & Putra, 2022), yang

https://doi.org/10.35145/joisie.v8i2.4763
mailto:azziqrazihad@webmail.umm.ac.id
mailto:ilyas@umm.ac.id

370 | Jurnal JOISIE, Volume 8, Nomor 2, Desember 2024

https://doi.org/10.35145/joisie.v8i2.4763

JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

menunjukkan adanya persaingan sengit antar pengembang untuk menciptakan aplikasi yang lebih baik

dan lebih efisien.

Salah satu platform pengembangan aplikasi yang sedang populer adalah Flutter, yang

memungkinkan pengembang untuk membuat aplikasi multi-platform (Android, iOS, dan Web)

dengan satu kode sumber (Bhagat, 2022; Muslim dkk., 2022). Flutter menawarkan kemudahan dalam

pengembangan aplikasi, mengurangi kebutuhan pengkodean ganda untuk berbagai platform, dan

memungkinkan proses pengembangan yang lebih cepat dan efisien (Widiarta dkk., 2021).

Namun, meskipun pengembangan aplikasi semakin cepat, tantangan utama yang dihadapi adalah

maintainability. Biaya pemeliharaan perangkat lunak diperkirakan menyumbang hingga 79%-90%

dari total biaya pengembangan (Sondha dkk., 2020), yang menunjukkan pentingnya merancang

aplikasi dengan arsitektur yang memungkinkan pemeliharaan yang mudah. Semakin tinggi

maintainability dari suatu aplikasi, maka semakin mudah pula proses pemeliharaannya sehingga

biaya, usaha dan waktu yang dibutuhkan akan semakin berkurang (Deta Aditya dkk., 2022; Laksono

dkk., 2024). Clean Architecture adalah salah satu pendekatan yang dapat meningkatkan

maintainability, karena menyediakan struktur yang jelas untuk aplikasi, memungkinkan perubahan

dan pembaruan yang lebih mudah tanpa memengaruhi bagian lain dari sistem (Subagio & Muttaqin,

2022).

Dalam konteks ini, penerapan Clean Architecture pada aplikasi berbasis Flutter dapat memberikan

solusi yang efektif untuk masalah pemeliharaan aplikasi. Clean Architecture pertama kali

diperkenalkan oleh Robert C. Martin (Anhar dkk., 2024). Berfokus pada pemisahan kode aplikasi

menjadi beberapa lapisan, yang masing-masing memiliki tanggung jawab yang jelas (Wijayanto dkk.,

2023). Pendekatan ini bertujuan untuk membuat aplikasi lebih mudah dikelola, diuji, dan diperbarui

tanpa mempengaruhi bagian lain dari aplikasi (Yadati, 2023). Struktur ini memisahkan logika bisnis,

antarmuka pengguna, dan lapisan data, sehingga mempermudah pengelolaan kode dan meminimalkan

ketergantungan antar bagian aplikasi.

Selain itu, untuk mencapai tingkat maintainability yang tinggi, Clean Architecture mengadopsi

prinsip SOLID, yaitu lima prinsip desain perangkat lunak yang bertujuan untuk menciptakan sistem

yang mudah dipahami, adaptif terhadap perubahan, dan dapat digunakan kembali (Cabral dkk., 2024).

Kelima prinsip dalam SOLID adalah Single Responsibility Principle (SRP), Open/Closed Principle

(OCP), Liskov Substitution Principle (LSP), Interface Segregation Principle (ISP), dan Dependency

Inversion Principle (DIP) (Sanchez dkk., 2022). Penerapan prinsip SOLID dapat meningkatkan

modularitas, fleksibilitas, dan keterbacaan kode, yang semuanya berkontribusi pada kemudahan

pemeliharaan aplikasi (Yanakiev dkk., 2024).

Penelitian yang dilakukan oleh Sinatria dkk. (2023), dengan tujuan untuk memberikan gambaran

dan panduan kepada pengembang tentang bagaimana mengorganisir aplikasi berbasis Flutter dengan

pendekatan Clean Architecture. Fokus utama dari penelitian ini adalah pada pembuatan modul-modul

modular dalam arsitektur aplikasi yang dapat digunakan kembali, serta implementasi prinsip SOLID

untuk meningkatkan fleksibilitas dan kemudahan pengembangan aplikasi.

Penelitian yang dilakukan oleh Abdillah dkk. (2024), mengimplementasikan Clean Architecture

pada aplikasi smart parking dengan fokus pada meningkatkan skalabilitas dan kemudahan

pemeliharaan. Penelitian ini menekankan pada struktur arsitektur yang modular dan terorganisir untuk

menghadapi perubahan kebutuhan sistem.

Berdasarkan beberapa penelitian terdahulu yang telah dilakukan, belum ada penelitian yang secara

spesifik mengevaluasi tingkat maintainability dari aplikasi berbasis Flutter yang menerapkan Clean

Architecture menggunakan metrik kualitas perangkat lunak yang terukur. Oleh karena itu, penelitian

ini bertujuan untuk mengimplementasikan Clean Architecture pada aplikasi mobile berbasis Flutter

sekaligus mengevaluasi tingkat maintainability-nya menggunakan McCall’s Software Quality Model.

Penelitian ini akan menggunakan aplikasi Al-Quran sebagai objek implementasi. Aplikasi ini

memiliki fitur-fitur utama seperti pembacaan ayat-ayat Al-Quran, terjemahan, tafsir, dan bookmark

untuk menandai ayat-ayat yang telah dibaca. Implementasi Clean Architecture pada aplikasi ini

https://doi.org/10.35145/joisie.v8i2.4763

Azziqra, Implementasi Clean Architecture Pada Aplikasi Mobile

Al-Quran Berbasis Flutter, 344-380| 371

https://doi.org/10.35145/joisie.v8i2.4763

JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

diharapkan dapat memberikan wawasan yang lebih terukur mengenai penerapan dan efektivitas

pendekatan ini dalam konteks aplikasi mobile berbasis Flutter.

2. METODE PENELITIAN

2.1 KERANGKA PENELITIAN

Terdapat beberapa tahapan yang telah diurutkan secara sistematis agar sesuai dengan pokok

pembahasan untuk mendapatkan hasil yang optimal dalam penelitian. Tahapan penelitian dapat dilihat

pada gambar 1.

Gambar 1. Kerangka Penelitian

1. Studi Literatur

Studi literatur dilakukan untuk mengumpulkan dan menganalisis literatur yang relevan terkait

Clean Architecture, prinsip SOLID, dan praktik terbaik dalam pengembangan aplikasi mobile.

Tahap ini dapat membantu penulis memperoleh pemahaman teoritis mengenai penelitian serta

membantu memahami konsep-konsep yang akan diterapkan (Rusydi & Nuryasin, 2024).

2. Perancangan Sistem

Pada tahap ini, dilakukan perancangan sistem dengan pendekatan Clean Architecture. Proses

ini melibatkan pembuatan struktur arsitektur berdasarkan prinsip SOLID. Perancangan ini

bertujuan untuk memberikan landasan yang jelas sebelum implementasi dilakukan.

3. Implementasi Clean Architecture

Tahap ini merupakan proses inti dari penelitian, di mana Clean Architecture diterapkan pada

pengembangan aplikasi mobile berbasis Flutter.

4. Pengujian

Pada tahap ini dilakukan pengujian untuk mengukur seberapa tingkat maintainability dari

aplikasi. Pengujian maintainability dilakukan dengan menggunakan metode McCall’s Software

Quality Model.

2.2 CLEAN ARCHITECTURE

Tujuan dari pola desain Clean Architecture adalah menyediakan standar yang memungkinkan

pemisahan logika bisnis dari lapisan antarmuka pengguna. Pemisahan ini bertujuan untuk memastikan

bahwa perubahan pada satu lapisan tidak berdampak langsung pada lapisan lain, sehingga

meningkatkan fleksibilitas dan efisiensi pemeliharaan (Yadati, 2023). Gambaran dari Clean

Architecture dapat dilihat pada gambar 2.

Gambar 2. Diagram Clean Architecture

https://doi.org/10.35145/joisie.v8i2.4763

372 | Jurnal JOISIE, Volume 8, Nomor 2, Desember 2024

https://doi.org/10.35145/joisie.v8i2.4763

JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

Clean Architecture, yang terdiri dari domain layer, data layer, dan presentation layer. Model

arsitektur berlapis seperti ini memungkinkan aplikasi mobile yang dikembangkan bersifat framework-

agnostic, yaitu logika bisnisnya tidak terikat pada framework eksternal tertentu, sehingga

mempermudah proses pemeliharaan dan pengembangan di masa depan (Wijayanto dkk., 2023).

Penerapan Clean Architecture juga mengikuti prinsip-prinsip SOLID. SOLID meliputi lima

prinsip utama, yaitu:

a. Single Responsibility Principle (SRP) memastikan setiap kelas atau modul memiliki satu

tanggung jawab utama sehingga setiap komponen akan memiliki peran yang jelas dan spesifik

(Sinatria dkk., 2023).

b. Open Closed Principle (OCP) yaitu kelas atau modul sebaiknya terbuka untuk ekstensi namun

tertutup untuk modifikasi, sehingga kelas bisa diperluas tanpa harus memodifikasi kode yang ada

(Cabral dkk., 2024).

c. Liskov Substitution Principle (LSP) menyatakan bahwa objek dari kelas turunan harus dapat

menggantikan objek dari kelas induknya tanpa menyebabkan ketidaksesuaian atau perubahan

pada keabsahan program (Ramachandrappa, 2024).

d. Interface Segregation Principle (ISP) menekankan bahwa jika sebuah fungsionalitas akan

dimanfaatkan oleh berbagai kelas, maka perlu dibuat interface yang spesifik untuk setiap kelas.

Tujuan dari prinsip ini adalah mencegah terjadinya kompilasi ulang yang tidak diperlukan dan

mengurangi ketergantungan antar komponen (Sanchez dkk., 2022).

e. Dependency Inversion Principle (DIP) mengurangi ketergantungan pada kelas konkret dengan

berfokus pada abstraksi (Sinatria dkk., 2023).

Penerapkan prinsip-prinsip tersebut dapat meningkatkan keterbacaan, mengurangi kompleksitas

kode, mudah untuk di uji, kode dapat digunakan kembali, dan mengurangi ketergantungan yang tinggi

antar kode serta memungkinkan pengembangan dan pemeliharaan aplikasi yang lebih efektif dan

efisien (Oktafiani & Saputra, 2022).

2.3 MCCALL’S SOFTWARE QUALITY MODEL

McCall’s Software Quality Model menyediakan pendekatan yang terstruktur untuk mengevaluasi

dan meningkatkan kualitas perangkat lunak. Model ini memiliki tiga aspek utama: Product Operation,

yang mencakup sifat-sifat operasional perangkat lunak; Product Revision, yang menyoroti

kemampuan perangkat lunak untuk menghadapi perubahan; dan Product Transition, yang

menggambarkan kemampuan perangkat lunak untuk beradaptasi dengan lingkungan baru (Salamudin

dkk., 2024).

Aspek maintainability sendiri termasuk kedalam Product Revision (Mulatsari dkk., 2023).

Quality metric pada McCall’s Software Quality Model dapat dihitung menggunakan rumus (1).

𝐹 =
𝐶1. 𝑀1 + 𝐶2. 𝑀2 + ⋯ + 𝐶𝑛 . 𝑀𝑛

𝐶1 + 𝐶2 + ⋯ + 𝐶𝑛 = 1

0 ≤ 𝑀 ≤ 1 | 0 ≤ 𝐶 ≤ 1

(1)

Quality Metric (F) dihitung dengan menjumlahkan hasil perkalian setiap quality factor (M)

dengan bobotnya (C). Total bobot pada quality metric berkisar antara 0 hingga 1, dengan jumlah

keseluruhan bobot adalah 1. Setiap quality metric memiliki quality factor tertentu yang memengaruhi

nilainya. Nilai masing-masing quality factor diperoleh dengan membandingkan jumlah positive case

terhadap test case yang relevan. Dalam McCall’s Software Quality Model, kualitas maintainability

ditentukan oleh beberapa faktor, yaitu simplicity, conciseness, consistency, instrumentation,

modularity, dan self-documentation. (Muthmainnah & Putro, 2023).

Sondha dkk. (2020) menjelaskan bahwa conciseness mengukur rasio antara jumlah total kelas

dan Logical Lines of Code (LLOC) dalam sebuah aplikasi. Modularity adalah quality factor yang

menilai tingkat ketergantungan antar komponen untuk menentukan apakah suatu kelas memiliki

tingkat coupling yang tinggi atau rendah. Self-documentation mengacu pada sejauh mana kode sumber

menyediakan dokumentasi yang jelas, sedangkan simplicity merujuk pada kemudahan dalam

memahami program. Kedua faktor ini, self-documentation dan simplicity, diukur berdasarkan nilai

https://doi.org/10.35145/joisie.v8i2.4763

Azziqra, Implementasi Clean Architecture Pada Aplikasi Mobile

Al-Quran Berbasis Flutter, 344-380| 373

https://doi.org/10.35145/joisie.v8i2.4763

JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

clean code, yang mencakup aspek seperti konvensi penamaan, aturan kapitalisasi, dan komentar.

Dalam penelitian ini, setiap quality factor untuk menghitung maintainability diberi bobot yang sama,

yaitu 0,167.

Total quality metric digunakan untuk mengevaluasi kelayakan aspek yang dianalisis, dengan

kategori yang dibagi menjadi lima berdasarkan rentang persentase. Pembagian kategori kelayakan

sesuai rentang persentase dapat dilihat pada tabel 1.

Tabel 1. Kategori kelayakan (Hanes dkk., 2020)

No. Kategori Presentase

1 Sangat Baik 81% - 100%

2 Baik 61% - 80%

3 Cukup Baik 41% - 80%

4 Tidak Baik 21% - 40%

5 Sangat Tidak Baik < 21%

3. HASIL DAN PEMBAHASAN

3.1 PERANCANGAN SISTEM

Tahapan perancangan sistem ini bertujuan untuk memisahkan logika bisnis dari tampilan aplikasi

dengan menerapkan Clean Architecture. Desain sistem mencakup tiga layer utama yaitu domain layer,

data layer, dan presentation layer. Struktur perancangan divisualisasikan pada gambar 3.

Gambar 3. Diagram rancangan arsitektur sistem berdasarkan Clean Architecture dan prinsip SOLID

Diagram rancangan sistem pada gambar 3 menunjukkan penerapan Clean Architecture. Tujuan

utama dari desain tersebut adalah untuk mencapai pemisahan tanggung jawab yang jelas (Wijayanto

dkk., 2023).

Domain layer mencakup logika inti aplikasi yang meliputi entities, use cases, dan interface

repository. Entities merepresentasikan objek utama dalam domain, sedangkan use cases bertanggung

jawab untuk mengatur alur bisnis aplikasi. Pada lapisan ini, prinsip Single Responsibility Principle

(SRP) diterapkan untuk memastikan bahwa setiap kelas hanya memiliki satu tanggung jawab utama.

Penerapan Open/Close Principle (OCP) memungkinkan penambahan fungsionalitas baru tanpa harus

mengubah kode yang telah ada. Sementara itu, penerapan Dependency Inversion Principle (DIP)

memastikan bahwa lapisan ini bergantung pada abstraksi, bukan implementasi. GetIt digunakan

https://doi.org/10.35145/joisie.v8i2.4763

374 | Jurnal JOISIE, Volume 8, Nomor 2, Desember 2024

https://doi.org/10.35145/joisie.v8i2.4763

JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

sebagai dependency injection untuk menyuntikkan dependensi antar lapisan, memungkinkan objek

seperti use cases atau repository diakses tanpa perlu mengetahui detail implementasinya.

Data layer berfungsi untuk mengelola akses data dari sumber lokal maupun eksternal. Lapisan

ini terdiri dari repositories, models, dan sources. Repositories berperan sebagai penghubung antara

domain layer dan data source, sementara models bertugas memetakan data ke dalam format yang

sesuai dengan kebutuhan domain. Penerapan Interface Segregation Principle (ISP) memastikan

bahwa interface dipecah menjadi bagian yang lebih spesifik untuk menghindari ketergantungan yang

tidak perlu. Selain itu, Liskov Substitution Principle (LSP) diterapkan untuk memastikan bahwa setiap

subclass dapat menggantikan superclass tanpa memengaruhi fungsi aplikasi.

Presentation layer menangani penyajian data kepada pengguna dengan menggunakan bloc

sebagai state management utama. Bloc berfungsi sebagai mediator antara logika bisnis dan antarmuka

pengguna, memastikan bahwa perubahan data ditampilkan secara reaktif. Core layer menyediakan

fungsi pendukung seperti utils, services, dan error handling yang digunakan bersama oleh berbagai

lapisan.

3.2 IMPLEMENTASI

Pada tahap implementasi, penelitian ini menerapkan Clean Architecture dalam pengembangan

aplikasi Al-Quran berbasis Flutter. Struktur Clean Architecture yang diterapkan terdiri dari dua

komponen, yaitu core dan features, seperti yang ditampilkan pada gambar 4.

Gambar 4. Struktur folder Clean Architecture

Lapisan core bertindak sebagai penghubung antara inti aplikasi, yang berisi logika bisnis dan

entitas, dengan lingkungan eksternal. Tujuan utama dari lapisan core adalah untuk memastikan

modularitas dan fleksibilitas sistem, sehingga pembaruan atau penggantian dependensi eksternal dapat

dilakukan tanpa memengaruhi inti aplikasi.

Sementara itu, lapisan features bertanggung jawab mengelola dan memisahkan fitur-fitur aplikasi

menjadi beberapa bagian yang lebih kecil sesuai fungsi masing-masing. Pemisahan ini bertujuan

untuk membagi basis kode menjadi komponen-komponen yang terorganisir, modular, dan sesuai

dengan kebutuhan setiap fitur aplikasi. Setiap fitur dalam lapisan ini terdiri dari tiga lapisan utama,

yaitu domain layer, data layer, dan presentation layer, yang dirancang berdasarkan prinsip Clean

Architecture.

3.2.1 Domain Layer

Untuk memastikan aplikasi yang dapat dipelihara dan dikembangkan secara skalabel, keberadaan

domain layer menjadi sangat penting. Dengan memusatkan logika bisnis utama pada lapisan ini,

pengembang memiliki fleksibilitas untuk menyesuaikan dan meningkatkan fungsi aplikasi tanpa

mempengaruhi komponen sistem lainnya.

https://doi.org/10.35145/joisie.v8i2.4763

Azziqra, Implementasi Clean Architecture Pada Aplikasi Mobile

Al-Quran Berbasis Flutter, 344-380| 375

https://doi.org/10.35145/joisie.v8i2.4763

JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

Gambar 5. Struktur domain layer

Berdasarkan gambar 5, domain layer terdiri dari usecases, repositories dan entities. Entities

merepresentasikan objek bisnis inti seperti “quran_surah.dart”, yang bertugas memodelkan dan

mengelola data utama yang terkait dengan aplikasi. Sementara itu, repositories seperti

“surah_repository.dart” bertindak sebagai penghubung antara domain layer dan data layer,

menyediakan metode-metode untuk mengakses dan memanipulasi data yang diperlukan. Komponen

usecases merepresentasikan operasi atau tindakan bisnis spesifik, seperti “get_all_surah.dart”,

“get_last_read.dart”,“get_surah_by_id.dart”dan “insert_last_read”, yang dirancang untuk

menjalankan alur kerja bisnis tertentu secara efisien.

Pada layer ini dapat diterapkan dua prinsip SOLID yaitu single responsibility principle (SRP)

dan dependency inversion principle (DIP). Contoh implementasi dari prinsip-prinsip tersebut dapat

dilihat pada gambar 6.

Gambar 6. Class SurahRepository

Pada gambar 6, terdapat kelas “SurahRepository” yang merupakan sebuah kelas abstrak yang

mendefinisikan berbagai metode untuk interaksi dengan data. Kelas ini berfungsi sebagai antarmuka

yang mendefinisikan kontrak umum yang terkait pada fitur Surah tanpa memberikan detail

implementasinya. Kemudian, kelas tersebut akan diimplementasikan oleh kelas yang ada pada

usecase.

Gambar 7. Class GetAllSurah

Salah satunya adalah kelas “GetAllSurah” yang bergantung pada abstraksi “SurahRepository”

untuk menampilkan data surah, bukan pada implementasi konkret dari “SurahRepository”. Ini

merupakan contoh penerapan Dependency Inversion Principle (DIP). Untuk mendukung

penerapannya digunakan library GetIt untuk dependency injection. Dalam hal ini,

“SurahRepositoryImpl” didaftarkan pada GetIt sebagai implementasi dari “SurahRepository”,

sehingga “GetAllSurah” dapat memperoleh abstraksinya secara otomatis. Contoh kode pendaftaran

dapat dilihat pada gambar 8.

https://doi.org/10.35145/joisie.v8i2.4763

376 | Jurnal JOISIE, Volume 8, Nomor 2, Desember 2024

https://doi.org/10.35145/joisie.v8i2.4763

JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

Gambar 8. Pendaftaran dependency menggunakan GetIt

Selain itu, terdapat implementasi dari single responsibility principle (SRP) yang terdapat pada

usecases, dapat dilihat pada pada gambar 5. Masing-masing usecase memiliki tanggung jawab tunggal

untuk menyelesaikan satu alur kerja bisnis yang spesifik.

3.2.2 Data Layer

Data layer memiliki peran utama dalam pengelolaan sumber data, repository, dan model dalam

arsitektur aplikasi. Lapisan ini berperan sebagai penghubung antara domain aplikasi dengan berbagai

sumber data eksternal, serta memfasilitasi akses dan manipulasi data.

Gambar 9. Struktur data layer

Berdasarkan Gambar 9, struktur data layer terdiri atas tiga bagian utama: datasources, models,

dan repositories. Datasources, seperti file “surah_local_data_source.dart”, bertugas mengambil dan

menyimpan data dari sumber lokal dalam format aslinya. Models, seperti file

“quran_surah_model.dart”, merepresentasikan data dari datasource dan mengonversinya ke format

yang siap digunakan di domain layer. Repositories, seperti file “surah_repository_impl.dart”,

menghubungkan data layer dan domain layer dengan mengambil data dari datasource, mengubahnya

ke model yang sesuai, dan menyediakannya untuk usecase.

Pada data layer, tiga prinsip SOLID dapat diterapkan, yaitu Single Responsibility Principle

(SRP), Open/Closed Principle (OCP), dan Liskov Substitution Principle (LSP). Contoh penerapannya

dalam sebuah aplikasi dapat dilihat pada gambar 10, 11, dan 12.

Gambar 10. Implementasi OCP pada data layer

Pada gambar 10, terdapat kelas “SurahLocalDataSource” yang merupakan sebuah kelas abstrak

yang mendefinisikan metode untuk mendapatkan data Surah dari sumber lokal. Kelas ini mengikuti

open/closed principle (OCP). Dengan menggunakan kelas abstrak ini, fungsionalitas kelas dapat

diperluas dengan membuat kelas turunan yang mengimplementasikan metode yang didefinisikan

tanpa harus mengubah kelas “SurahLocalDataSource” itu sendiri.

https://doi.org/10.35145/joisie.v8i2.4763

Azziqra, Implementasi Clean Architecture Pada Aplikasi Mobile

Al-Quran Berbasis Flutter, 344-380| 377

https://doi.org/10.35145/joisie.v8i2.4763

JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

Gambar 11. Implementasi SRP pada data layer

Pada gambar 11, “SurahLocalDataSourceImpl” mengimplementasi “SurahLocalDataSource”.

Kelas ini bertanggung jawab untuk membaca data Surah dari sumber lokal. Kelas ini menerapkan

Single Responsibility Principle (SRP) karena hanya memiliki satu tanggung jawab utama yaitu

pengelolaan data Surah dari sumber lokal. Dengan memisahkan tanggung jawab ini ke dalam kelas

tersendiri, kelas tersebut fokus pada satu tugas spesifik. Pemisahan tanggung jawab ini meminimalkan

kompleksitas dan membuat kode lebih terstruktur.

Gambar 12. Implementasi LSP pada data layer

Pada gambar 12, terdapat kelas “SurahModel” yang merupakan turunan dari kelas Surah. Kelas

ini menerapkan Liskov Substitution Principle (LSP). Kelas SurahModel memperluas kelas Surah

dengan menambahkan metode tambahan seperti “fromJson” dan “toJson” untuk konversi data.

Dengan demikian, objek “SurahModel” dapat digunakan di mana saja objek Surah digunakan, tanpa

memerlukan perubahan pada kode yang menggunakan objek Surah.

3.2.3 Presentation Layer

Presentation layer adalah lapisan dalam arsitektur aplikasi yang berfungsi sebagai antarmuka

utama antara pengguna dan sistem menggunakan Bloc pattern.

Gambar 13. Struktur presentation layer

Berdasarkan gambar 13, presentation layer terdiri dari bloc, pages, dan widgets. Bloc

bertanggung jawab atas pengelolaan state aplikasi dan logika bisnis yang terkait dengan tampilan

(Munawar dkk., 2021). Arsitektur dari Bloc pattern dapat dilihat pada gambar 14.

https://doi.org/10.35145/joisie.v8i2.4763

378 | Jurnal JOISIE, Volume 8, Nomor 2, Desember 2024

https://doi.org/10.35145/joisie.v8i2.4763

JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

Gambar 14. Bloc pattern (Zulistiyan dkk., 2024)

Pada bagian bloc terdiri dari tiga komponen utama, yaitu “surah_bloc.dart” yang menjadi inti

implementasi dari Bloc untuk fitur surah, “surah_event.dart” yang mendefinisikan berbagai event

yang dapat memicu perubahan state, dan “surah_state.dart” yang berisi berbagai state yang dapat

terjadi selama pengelolaan fitur surah.

Pages merepresentasikan halaman-halaman dalam aplikasi. Sedangkan widgets adalah elemen-

elemen UI dasar yang digunakan untuk membangun tampilan. Setiap widget memiliki tanggung jawab

tunggal untuk menampilkan satu elemen visual atau interaksi tertentu.

3.3 PENGUJIAN MAINTAINABILITY

Pengujian dilakukan dengan menghitung nilai dari quality factor, yaitu simplicity, conciseness,

consistency, instrumentation, modularity dan self-documentation. Hasil dari pengujian ini

memberikan gambaran tentang tingkat maintainability pada aplikasi. Hasil pengujian dapat dilihat

pada tabel 2.

Tabel 2. Hasil Pengujian Tingkat Maintainability

Quality Factor Positive Case dan Test Case Nilai M C F

Conciseness
Banyaknya Class 129

0,11 0,167 0,02
LLOC 1185

Consistency
Fitur sesuai desain 4

1 0,167 0,17
Fitur yang di desain 4

Instrumentation

Fitur punya instrumentasi 4

1 0,167 0,17 Fitur yang seharusnya punya

instrumentasi
4

Modularity
Class yang loose coupling 118

0.91 0,167 0,15
Banyaknya Class 129

Self-

Documentation

Class yang clean code 111
0.86 0,167 0,14

Banyaknya Class 129

Simplicity
Fungsi yang clean code 150

0.82 0,167 0,14
Banyaknya fungsi 182

Total 0,79

Hasil pengujian pada tabel 2 menunjukkan bahwa tingkat maintainability aplikasi mencapai 0,79

atau 79%, yang berada dalam kategori "baik" menurut skala penilaian pada tabel 1. Faktor modularity

memperoleh nilai tertinggi sebesar 0,15 dari total 0,167, menunjukkan bahwa arsitektur aplikasi

berhasil meminimalkan ketergantungan antar komponen. Modularitas yang baik mencerminkan

keberhasilan penerapan prinsip desain seperti Single Responsibility Principle (SRP) dan Dependency

Inversion Principle (DIP), yang memisahkan tanggung jawab setiap komponen dengan jelas.

Sebaliknya, quality factor conciseness memiliki nilai terendah, yaitu 0,02, akibat tingginya

jumlah Logical Lines of Code (LLOC) pada beberapa kelas, terutama di presentation layer. Hal ini

disebabkan oleh sifat presentation layer yang cenderung menampung banyak elemen visual dan

logika interaksi pengguna. Kondisi ini dapat diatasi dengan melakukan refaktorisasi kode melaui

teknik seperti extract widget atau extract method, sehingga elemen-elemen UI yang berulang atau

kompleks dipisahkan menjadi widget atau metode tersendiri.

4. SIMPULAN

Berdasarkan hasil pengujian maintainability, implementasi Clean Architecture pada aplikasi Al-

Quran berbasis Flutter dapat dinyatakan berhasil dengan tingkat maintainability mencapai 79%, yang

berada dalam kategori "baik". Aplikasi yang dikembangkan berjalan dengan baik, memenuhi semua

fungsionalitas utama, seperti pembacaan ayat-ayat Al-Quran, terjemahan, tafsir, dan bookmark untuk

menandai ayat yang telah dibaca. Faktor modularity memberikan kontribusi tertinggi terhadap

https://doi.org/10.35145/joisie.v8i2.4763

Azziqra, Implementasi Clean Architecture Pada Aplikasi Mobile

Al-Quran Berbasis Flutter, 344-380| 379

https://doi.org/10.35145/joisie.v8i2.4763

JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

maintainability, menegaskan bahwa prinsip Single Responsibility dan Dependency Inversion telah

diterapkan dengan baik untuk memisahkan tanggung jawab setiap komponen.

Namun, faktor conciseness menunjukkan nilai yang lebih rendah akibat tingginya jumlah Logical

Lines of Code (LLOC) pada beberapa komponen, terutama di presentation layer. Hal ini menunjukkan

bahwa meskipun aplikasi berjalan dengan baik, diperlukan upaya refaktorisasi kode untuk mengurangi

kompleksitas, meningkatkan keterbacaan, dan menjaga efisiensi pengembangan di masa mendatang.

Dengan hasil yang diperoleh, implementasi ini memberikan dasar yang kokoh untuk

pengembangan aplikasi yang lebih baik di masa depan, meskipun perbaikan lanjutan pada aspek

pengelolaan kode dan pengujian tambahan tetap diperlukan untuk menjaga kualitas perangkat lunak.

5. DAFTAR PUSTAKA

Abdillah, F., Sirojudin, A., Amin, M. Y., & Atmadji, E. S. J. (2024). Analisis Skalabilitas Aplikasi

Smart Parking Melalui Penerapan Clean Architecture. METHOMIKA Jurnal Manajemen

Informatika dan Komputerisasi Akuntansi, 8(1), 96–104.

https://doi.org/10.46880/jmika.Vol8No1.pp96-104

Anhar, F. F., Swari, M. H. P., & Aditiawan, F. P. (2024). Analisis Perbandingan Implementasi Clean

Architecture Menggunakan MVP, MVI, Dan MVVM Pada Pengembangan Aplikasi Android

Native. Jupiter: Publikasi Ilmu Keteknikan Industri, Teknik Elektro dan Informatika, 2(2), 181–

191. https://doi.org/10.61132/jupiter.v2i2.155

Badrudduja, Moh. H., & Putra, R. E. (2022). Penerapan Clean Architecture pada Aplikasi Pemesanan

Makanan menggunakan Metode Slope One Algorithm. Journal of Informatics and Computer

Science (JINACS), 3(04), 506–514. https://doi.org/10.26740/jinacs.v3n04.p506-514

Bhagat, S. A. (2022). Review on Mobile Application Development Based on Flutter Platform.

International Journal for Research in Applied Science and Engineering Technology, 10(1), 803–

809. https://doi.org/10.22214/ijraset.2022.39920

Cabral, R., Kalinowski, M., Baldassarre, M. T., Villamizar, H., Escovedo, T., & Lopes, H. (2024).

Investigating the Impact of SOLID Design Principles on Machine Learning Code

Understanding. Proceedings of the IEEE/ACM 3rd International Conference on AI Engineering

- Software Engineering for AI, 7–17. https://doi.org/10.1145/3644815.3644957

Deta Aditya, M., Susanty, M., & Artikel, I. (2022). Studi Komparasi Maintainability Antara Aplikasi

yang Dikembangkan dengan Framework Flutter dan React Native. JURNAL INFORMATIKA,

9(2). http://ejournal.bsi.ac.id/ejurnal/index.php/ji

Hanes, H., Angela, A., & Br Sembiring, S. (2020). Pengukuran Kualitas Website Penjualan Tiket

Dengan Menggunakan Metode Mccall. JTIK (Jurnal Teknik Informatika Kaputama), 4(2), 81–

88. https://doi.org/10.59697/jtik.v4i2.595

Ikhwan, A., Khalis Nugraha, R., Syahnur, E. A., & Ridho, R. (2023). Perancangan Aplikasi Penilaian

Kinerja Driver Menggunakan Kodular di Pt Perkebunan Nusantara III Berbasis Mobile. JOISIE

Journal Of Information System And Informatics Engineering, 7(2), 364–374.

https://doi.org/https://doi.org/10.35145/joisie.v7i2.4001

Laksono, W. P., Satria, B., Wicaksana, T., Wijasena, A. Y., & Sahria, Y. (2024). Implementasi Clean

Architecture Dalam Membangun Aplikasi Mobile Menggunakan Flutter. Nusantara Journal of

Multidisciplinary Science, 2(1), 173–180. https://jurnal.intekom.id/index.php/njms

Mulatsari, W. E., Candrasari, D. M., & Suyudi, S. (2023). Sistem Informasi Pelayanan Administrasi

Kependudukan Kelurahan Kenteng Berbasis Website dengan Uji Kualitas Sistem Menggunakan

Metode Mccall Software Quality. Joined Journal (Journal of Informatics Education), 6(1), 22.

https://doi.org/10.31331/joined.v6i1.2597

Munawar, G., Prayoga, R. R., Jumiyani, R., & Syalsabila, A. (2021). Performance Analysis of BLoC

and Provider State Management Library on Flutter. Jurnal Mantik, 5(3), 1591–1597.

Muslim, Sari, R. P., & Rahmayuda, S. (2022). Implementasi Framework Flutter Pada Sistem

Informasi Perpustakaan Masjid (Studi Kasus: Masjid Di Kota Pontianak). Coding Jurnal

Komputer dan Aplikasi, 10(1), 46–59.

https://doi.org/https://dx.doi.org/10.26418/coding.v10i01.52178

https://doi.org/10.35145/joisie.v8i2.4763

380 | Jurnal JOISIE, Volume 8, Nomor 2, Desember 2024

https://doi.org/10.35145/joisie.v8i2.4763

JOISIE licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

Muthmainnah, S. F., & Putro, H. P. (2023). Pengujian Nonfungsional dengan Pendekatan McCall’s

Factor pada Perspektif Product Revision. AUTOMATA, 4(2).

Oktafiani, I., & Saputra, M. F. A. (2022). Pengembangan Aplikasi SOLID-Calculator untuk

Pengukuran Kualitas Desain Diagram Kelas. Jurnal Sains dan Informatika, 8(1).

https://doi.org/10.22216/jsi.v8i1.959

Ramachandrappa, N. C. (2024). SOLID Design Principles in Software Engineering. International

Journal of Computer Trends and Technology, 72(9), 18–23.

https://doi.org/10.14445/22312803/IJCTT-V72I9P104

Rusydi, M. H., & Nuryasin, I. (2024). Perancangan UI/UX Aplikasi Hidup Sehat Berbasis Mobile

Menggunakan Metode Design Thinking. JOISIE Journal Of Information Systems And

Informatics Engineering, 8(1), 54–64. https://doi.org/10.35145/joisie.v8i1.4168

Salamudin, S., Hartati, S., Saputro, H., & Meilantika, D. (2024). Evaluasi Kualitas Portal E-lerning

Universitas Mahakarya Asia Menggunakan Metode MCCALL. Jurnal Nasional Ilmu Komputer,

5(1), 16–24. https://doi.org/10.47747/jurnalnik.v5i1.1606

Sanchez, D., Rojas, A. E., & Florez, H. (2022). Towards a Clean Architecture for Android Apps using

Model Transformations. International Journal of Computer Science, 49(1).

https://www.iaeng.org/IJCS/issues_v49/issue_1/IJCS_49_1_28.pdf

Sinatria, M. B., Oman Komarudin, & Kamal Prihamdani. (2023). Penerapan Clean Architecture

Dalam Membangun Aplikasi Berbasis Mobile Dengan Framework Google Flutter. INFOTECH

journal, 9(1), 132–146. https://doi.org/10.31949/infotech.v9i1.5237

Sondha, A. T., Sa’adah, U., Hardiansyah, F. F., & Rasyid, M. B. A. (2020). Framework dan Code

Generator Pengembangan Aplikasi Android dengan Menerapkan Prinsip Clean Architecture.

Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 9(4), 327–335.

https://doi.org/10.22146/jnteti.v9i4.572

Subagio, A. W., & Muttaqin, F. (2022). Penerapan Clean Architecture pada Pengembangan Sistem

Payment Point Online Bank. Jurusan Teknik Elektro, 32(2), 324–333.

https://doi.org/http://dx.doi.org/10.17977/um034v32i2p324-333

Widiarta, I. M., Julkarnain, M., & Imanulloh, J. (2021). Rancang Bangun Aplikasi Uts In Me Berbasis

Android Menggunakan Flutter Dengan Metode Rapid Application Development. Jurnal

Informatika Teknologi dan Sains, 3(4), 447–452. https://doi.org/10.51401/jinteks.v3i4.1323

Wijayanto, R. A., Hajar, R. R., & Sejati, P. (2023). Implementing Flutter Clean Architecture for

Mobile Tourism Application Development. International Journal of Computer Applications,

185(39), 23–30.

Yadati, N. S. P. K. (2023). Architecture Design (MVVM + Clean Architecture). Journal of Artificial

Intelligence, Machine Learning and Data Science, 1(3), 703–706.

https://doi.org/10.51219/JAIMLD/naga-satya-praveen-kumar-yadati/177

Yanakiev, I., Lazar, B.-M., & Capiluppi, A. (2024). Applying SOLID principles for the refactoring of

legacy code: An experience report. Journal of Systems and Software, 220, 112254.

https://doi.org/10.1016/j.jss.2024.112254

Zulistiyan, M., Adrian, M., & Wibowo, Y. F. A. (2024). Performance Analysis of BLoC and GetX

State Management Library on Flutter. Journal of Information System Research (JOSH), 5(2),

583–591. https://doi.org/10.47065/josh.v5i2.4698

https://doi.org/10.35145/joisie.v8i2.4763

